MEDIUM
Earn 100

Trapezoidal rule for the evaluation of abfxdx requires the interval a,b to be divided into:

50% studentsanswered this correctly

Important Questions on Definite Integration

MEDIUM
Let f :0, 10,  be a continuous function such that 01fxdx=10. Which of the following statement is NOT necessarily true?
HARD
Suppose the limit L=limnn0111+x2ndx exists and is larger than 12, then
HARD
limnnn2+12+nn2+22+nn2+32+.. .+15n is equal to
HARD
If limn1a+2a++nan+1a-1na+1+na+2++na+n=160  for some positive real number a, then a is equal to
HARD

For aR (the set of all real numbers), a-1, limn1a+2a++nan+1a-1na+1+na+2++na+n=160. Then a=

HARD
Let fx= limnnnx+nx+n2..x+nnn!x2+n2 x2+n24..x2+n2n2xn , for all x>0 . Then
HARD
limn(n+1)1/3n4/3+(n+2)1/3n4/3+.....+(2n)1/3n4/3 is equal to
MEDIUM
Taking four subintervals, the value of 01dx1+x by using trapezoidal rule will be
MEDIUM
By Simpson's rule, the value of 12dxx dividing the interval 1,2 into four parts is
HARD
The value of   I= k=1 98 k k+1 k+1 x(x+1) dx,  then
HARD
For each positive integer n, let yn=1n((n+1)(n+2)...(n+n))1n. If limnyn=L, then the value of L (where x is the greatest integer less than or equal to x) is ____
HARD
For aR, a>1, let limn1+23++n3n7/31an+12+1an+22++1an+n2=54. Then the possible value(s) of a is/are:
MEDIUM
The value of limnr=1n1+r2n22rn2 is equal to
MEDIUM
Dividing the interval 1,2 into four equal parts and using Simpson's rule, the value of 12dxx will be
MEDIUM
Using trapezoidal rule and taking n=4, the approximate value of integral 19x2dx is 2121+92+α2+β2+72, then
EASY
Simpson's rule for evaluation of abfxdx requires the interval a,b to be divided into