HARD
12th CBSE
IMPORTANT
Earn 100

Using Lagrange's mean value theorem, prove that (b-a)sec2a<tanb-tana<(b-a)sec2b, where 0<a<b<π2.

Important Questions on Mean Value Theorems

MEDIUM
12th CBSE
IMPORTANT
If f(x)=Ax2+Bx+C is such that f(a)=f(b), then write the value of c in Rolle's theorem.
EASY
12th CBSE
IMPORTANT
State langrage's mean value theorem .
MEDIUM
12th CBSE
IMPORTANT
If the value of c prescribed in Rolle's theorem for the function f(x)=2x(x-3)n on the interval [0,23] is 34, write the value of n (a positive integer).
HARD
12th CBSE
IMPORTANT
Find the value of c prescribed by Lagrange's mean value theorem for the function fx=x2-4  defined on 2,3.
MEDIUM
12th CBSE
IMPORTANT
If the polynomial equation anxn+an-1xn-1+an-2xn-2++a2x2+a1x+a0=0n being a positive integer, has two different real roots α and β, then between α and β, the equation nanxn-1+(n-1)an-1xn-2++a1=0
MEDIUM
12th CBSE
IMPORTANT
If 4a+2b+c=0, then the equation 3ax2+2bx+c=0 has at least one real root lying in the interval.
HARD
12th CBSE
IMPORTANT

For the function fx=x+1x, x1,3, the value of c for the Lagrange's Mean Value Theorem is