MEDIUM
9th West Bengal Board
IMPORTANT
Earn 100

What is centroid? Prove that centroid of any triangle divides its median in the ratio 2:1 from the vertex.

Important Questions on Theorems on Concurrence

HARD
9th West Bengal Board
IMPORTANT
AD,BE and CF are three medians of the ABC. Prove that AD+BE>CF.
MEDIUM
9th West Bengal Board
IMPORTANT
O is the ex-centre of the ABC. Prove that BOC=90°-12BAC.
MEDIUM
9th West Bengal Board
IMPORTANT
Two medians BE and CF of ABC intersect at G. Prove that area of the quadrilateral AFGE=12 area of ABC.
MEDIUM
9th West Bengal Board
IMPORTANT
I is the incentre of ABCAI bisects BC at D. Prove that ABC is isosceles.
MEDIUM
9th West Bengal Board
IMPORTANT
Two medians BE and CQ of ABC intersects at G. Prove that BGQ=16ABC.
MEDIUM
9th West Bengal Board
IMPORTANT
I is the incentre of the ABC. The perpendicular drawn from I to BC intersects BC at P. Prove that AB-AC=BP-CP.
MEDIUM
9th West Bengal Board
IMPORTANT
The interior bisector of B and the exterior bisector of C of the ABC intersects each other at O. Prove that BOC=12A.
MEDIUM
9th West Bengal Board
IMPORTANT
E is the mid-point of AD, a median of ABC. The extended BE intersects AC at F. Prove that AF=13AC.