EASY
12th CBSE
IMPORTANT
Earn 100

Write the function tan-11+x2-1x,x0 in simplest form.

Important Points to Remember in Chapter -1 - Inverse Trigonometric Functions from NCERT MATHEMATICS PART I Textbook for Class XII Solutions

1. Properties of Inverse Trigonometric functions of the form f-1(f(x)):

(i) sin1sinx=x, for all xπ2,π2

(ii) cos1cosx=x, for all x0,π

(iii) tan1tanx=x, for all xπ2,π2

(iv) cosec-1(cosecx)=x, for all xπ2,π2-0

(v) sec1secx=x, for all x0,π-π2

(vi) cot1cotx=x, for all x0,π

2. Properties of Inverse Trigonometric functions of the form ff-1(x):

(i) sinsin1x=x, for all x1,1

(ii) coscos1x=x, for all x1,1

(iii) tantan1x=x, for all xR

(iv) cosec(cosec-1x)=x, for all x,11,

(v) secsec1x=x, for all x,11,

(vi) cotcot1x=x, for all xR

3. Property-III

(i) sin-1sinx=-π-x, if x-3π2,-π2x, if x-π2,π2π-x, if xπ2,3π2

(ii) cos-1cosx=-x,     if x-π,0x,      if x0,π2π-x, if xπ,2π-2π+x,  if x2π,3π

(iii) tan-1tanx=π-x,if x-3π2,-π2x, if  x-π2,π2x-π, if xπ2,3π2x-2π, if x3π2,5π2

4. Reflection Identities:

(i) sin1x=sin1x, for all x1,1

(ii) cos1x=πcos1x, for all x1,1

(iii) tan1x=tan1x, for all xR

(iv) cosec1x=cosec1x, for all x,11,

(v) sec1x=πsec1x, for all x,11,

(vi) cot1x=πcot1x, for all x  R

5. Reciprocal Inverse Identities:

(i) sin-11x=cosec-1x, for all x(,1][1,)

(ii) cos-11x=sec-1x, for all x(,1][1,)

(iii) tan-11x-cot-1x,x>0-π+cot-1x,x<0

6. Cofunction Inverse Identities:

(i) sin-1x+cos-1x=π2, for all x  [1,1]

(ii) tan-1x+cot-1x=π2, for all xR

(iii) sec-1x+cosec-1x=π2, for all x(,1][1,)

7. Formulae to find sum or difference of tan-1x and tan-1y:

(i) tan-1x+tan-1y=tan-1x+y1-xy,  if xy<1π+tan-1x+y1-xy,if x>0,y>0  and  xy>1-π+tan-1x+y1-xy,  if x<0,y<0  and  xy>1

(ii) tan-1x-tan-1y=tan-1x-y1+xy,  if xy>-1π+tan-1x-y1+xy, if  x>0,y<0 and xy<-1-π+tan-1x-y1+xy, if  x<0,y>0 and xy<-1

8. Formulae to find sum or difference of sin-1x and sin-1y:

(i) sin1x+sin1y=sin-1x1-y2+y1-x2,if -1x,y1 and x2+y21orif xy<0 and x2+y2>1π-sin-1x1-y2+y1-x2,if 0<x,y1 and x2+y2>1-π-sin-1x1-y2+y1-x2,if -1x,y<0 and x2+y2>1

(ii) sin1x-sin1y=sin-1x1-y2-y1-x2,if -1x,y1 and x2+y21orif xy<0 and x2+y2>1π-sin-1x1-y2-y1-x2,if 0 < x1,-1y0 and x2+y2>1-π-sin-1x1-y2-y1-x2if -1x<0, 0<y1 and x2+y2>1

9. Formulae to find sum or difference of cos-1x and cos-1y:

(i) cos1x+cos1y=cos-1xy-1-x21-y2,if -1x,y1 and x+y02π-cos-1xy-1-x21-y2,if -1x,y1 and x+y0

(ii) cos1x-cos1y=cos-1xy+1-x21-y2,if -1x,y1 and xy-cos-1xy+1-x21-y2,if -1y0,0<x1 and xy

10. Formula of 2sin-1x:

2sin-1x=sin-12x1-x2,if -12x12π-sin-12x1-x2,if 12x1-π-sin2x1-x2,if -1x-12

11. Formula of 3cos-1x:

3sin-1x=sin-13x-4x3,if -12x12π-sin-13x-4x3,if 12<x1-π-sin-13x-4x3,if -1x<-12

12. Formula of 2cos-1x

2cos-1x=cos-12x2-1,if 0x12π-cos-12x2-1,if -1x0

13. Formula of 3cos-1x:

3cos-1x=cos-14x3-3x,if 12x12π-cos-14x3-3x,if -12x122π+cos-14x3-3x,if -1x-12

14. Formula of 2tan-1x in terms of tan-1x:

2tan-1x=tan-12x1-x2,i-1<x<1π+tan-12x1-x2,if x>1-π+tan-12x1-x2,if x<-1

15. Formula of 3tan-1x:

3tan-1x=tan-13x-x31-3x2,if -13<x<13π+tan-13x-x31-3x2,if x>13-π+tan-13x-x31-3x2,if x<-13

16. Formula of 2tan-1x in terms of sin-1x:

2tan-1x=sin-12x1+x2,if -1x1π-sin-12x1+x2,if x>1-π-sin-12x1+x2,if x<-1

17. Formula of 2tan-1x in terms of cos-1x:

2tan-1x=cos-11-x21+x2,    if  0x<-cos-11-x21+x2,   if   -<x0

18. Relation between different inverse trigonometric functions:

(i) sin-1x=cos-11-x2=tan-1x1-x2=cot-11-x2x=sec-111-x2=cosec-11x , (0<x<1)

(ii) cos-1x=sin-11-x2=tan-11-x2x=cot-1x1-x=sec-11x=cosec-111-x2 , (0<x<1)

(iii) tan-1x=sin-1x1+x2=cos-111+x2=cot-11x=sec-11+x2=cosec-11+x2x , (x>0)