MEDIUM
Earn 100

limn212-213212-215....212-212n+1 is equal to

47.98% studentsanswered this correctly

Important Questions on Limits

HARD
Let a=minx2+2x+3:xR and b=limθ01-cosθθ2. Then r=0narbn-r is
HARD
The value of limx01-cos2x3+cosxxtan4x is equal to 
MEDIUM
The value of limh03sinπ6+h-cosπ6+h3h3cosh-sinh is :
HARD
Let f:RR be a positive increasing function with limxf(3x)fx=1. Then, limxf(2x)f(x) is equal to
MEDIUM
Define a sequence Sn of real numbers by, Sn=k=0n1n2+k  for n1. Then limnSn
HARD
If fx=sinxcosxtanxx3x2x2x1x, x-π2,π2, then limx0f(x)x2 is equal to
EASY
If limx0xasinbxsinxc,a,b,c,R~0 exists and has non-zero value, then
EASY
For each tR, let t be the greatest integer less than or equal to t. Thenlimx0+x1x+2x++15x
HARD
The value of limnr+2r+...+nrn2, where r is non-zero real number and r denotes the greatest integer less than or equal to r, is equal to :
HARD
If · denote the greatest integer function then limnx+2x+.+nxn2 is -
EASY
The value of the limit limθ0tanπcos2θsin2πsin2θ is equal to :
HARD
If [·] denotes the greatest integer function then limn[x]+[2x]++[nx]n2 is
MEDIUM
limθπ42-cosθ-sinθ(4θ-π)2 is equal to
MEDIUM
If α is the positive root of the equation, px=x2x2=0, then limxα+1cospxx+α4is equal to
EASY
If fx=x-sinxx+cos2x , then limxf(x) is equal to