Argument of a Complex Number

IMPORTANT

Argument of a Complex Number: Overview

This topic covers concepts such as Argument of a Complex Number, Principle Argument of a Complex Number, General Argument of a Complex Number, Argument of Product of Two Complex Numbers, Argument of Quotient of Two Complex Numbers, etc.

Important Questions on Argument of a Complex Number

EASY
IMPORTANT

If argz<0, then argzargz=

EASY
IMPORTANT

Let z and  w be two non-zero complex numbers such that  z=w  and  argz+argw=π  then z equals –

EASY
IMPORTANT

A complex number z=1+i3.

The general argument of z is

EASY
IMPORTANT

A complex number z=3+i.

The general argument of z is 2nπ+π6, where n is an integer.

EASY
IMPORTANT

A complex number z=1-i.

The argument of z¯ is

EASY
IMPORTANT

A complex number z=3+9i.

Find the argument of z¯.

MEDIUM
IMPORTANT

The locus of a point P(z) satisfying |z+3|+|z 3|=10 is (where z is a complex number)

MEDIUM
IMPORTANT

The modulus-amplitude form of (1-i)3(2-i)(2+i)(1+i) is

EASY
IMPORTANT

The amplitude of i17 is

EASY
IMPORTANT

Statement I  Both z1 and z2 are purely real , if  arg (z1 z2) = 2π  (z1 and z2 have principle arguments).
Statement II Principle arguments of complex number lies between (-π, π].

EASY
IMPORTANT

z1, z2 and z3, z4 are 2 pairs of complex conjugate numbers. Find the value of  arg z 1 z 4 + arg z 2 z 3 .

MEDIUM
IMPORTANT

Let z= (23+2i)8(1-i)6+(1+i)6(23-2i)8. Let θ be the argument of z such that θ∈ (– π,π] then 4 sinθ is equal to

MEDIUM
IMPORTANT

If pqrqrprpq=0, where p, q, r all the moduli of non-zero complex numbers z1, z2, z3, then prove that arg z3z2=λ arg z3-z1z2-z1 find λ

MEDIUM
IMPORTANT

Consider a square OABC in argand plane, where O is origin and A be complex number z0. Then the equation of the circle that can be inscribed in this square is (Vertices of square are given in anticlockwise order and i=-1)

EASY
IMPORTANT

z1=1+i3 and z2=-1-i3 are two distinct complex number, represented by two distinct points in the argand plane, then find their arguments?

EASY
IMPORTANT

The argument of 1+i33+1 is equal to

HARD
IMPORTANT

If z-25i15 , then |Maximum arg(z)-Minimum arg(z)| equals -

HARD
IMPORTANT

If P and Q are represented by the complex numbers z1 and z2, such that 1z2+1z1= 1z2-1z1, then the circumcenter of ΔOPQ (where O is the origin) is

MEDIUM
IMPORTANT

The argument of 1+i33+i is equal to

EASY
IMPORTANT

If argz<0, then arg-z-argz can be equal to