Elementary Operation (Transformation) of a Matrix

IMPORTANT

Elementary Operation (Transformation) of a Matrix: Overview

This topic covers concepts, such as, Elementary Operation (Transformation) of a Matrix, Multiplication of Rows/Columns of a Matrix by Non-zero Number & Addition of Multiple of a Row/Column to Another Row/Column in a Matrix etc.

Important Questions on Elementary Operation (Transformation) of a Matrix

EASY
IMPORTANT

If A=2112. Find new matrix obtained after transformation R1+2R2.

EASY
IMPORTANT

If A=5216 and Ci, Ri represents ith column and row respectively, find new matrix obtained for 2R1, 3R2.

EASY
IMPORTANT

If A=4512 and Ci, Ri represents ith column and row respectively, find new matrix obtained for 2R1, 3R2.

MEDIUM
IMPORTANT

Transform 1-12213324 into an upper triangular matrix by using the suitable row transformations.

MEDIUM
IMPORTANT

Show that matrices A and B are row equivalent if A=1-10211 and B=301031.

EASY
IMPORTANT

Transform 123257312 into an upper triangular matrix by using the suitable row transformations.

EASY
IMPORTANT

Transform 1-12213324 into an upper triangular matrix by using the suitable column transformations.

MEDIUM
IMPORTANT

Show that matrices A and B are row equivalent if A=1-10211 and B=301031.

EASY
IMPORTANT

Transform 123257312 into an upper triangular matrix by using the suitable row transformations.

HARD
IMPORTANT

For the following equations 

x+3y+3z=12

x+4y+4z=15

x+3y+4z=13

Using the method of reduction. Select the correct options.

HARD
IMPORTANT

Transform 1-12213324 into an upper triangular matrix by suitable column transformations.
 

HARD
IMPORTANT

Convert 1-123 into an identity matrix by suitable row transformations. 
 

MEDIUM
IMPORTANT

Use suitable transformation on 1234 to convert it into an upper triangular matrix.

HARD
IMPORTANT

Find the addition of two new matrices A=1-13210331, C3C3+2C2 and then 3R3 .

HARD
IMPORTANT

Find the addition of the two new matrices. 

A=1-13210331, 3R3 and then C3C3+2C2.

HARD
IMPORTANT

What do you observe? 

A=12-1013,2C2 and B=102245 ,-3R1.

MEDIUM
IMPORTANT

Apply the given elementary transformation on the following matrix A=5413,C1C2; B=3145,R1R2.

MEDIUM
IMPORTANT

Apply the given elementary transformation on the following matrix B=1-13254,R1R1-R2.

MEDIUM
IMPORTANT

Apply the given elementary transformation on the following matrix. A=10-13,R1R2.

HARD
IMPORTANT

If A=213101111 then reduce it to I3 by using row transformations.