Properties of a Binary Operation

IMPORTANT

Properties of a Binary Operation: Overview

The topic will discuss the properties of binomial operations. We will learn different properties such as closure, associative and many more.

Important Questions on Properties of a Binary Operation

HARD
IMPORTANT

Let A=1,2,4. Define as operation * by a*b=HCFa,b. Prepare its composition table. Is * a binary operation? Find the identity element in A.

MEDIUM
IMPORTANT

Let A=1,2,3. Define as operation * by a*b=LCMa,b. Prepare its composition table. Is * a binary operation?

HARD
IMPORTANT

If * is a binary operation on Z defined by a*b=a+5b, find the value of 3*2 and 2*3. Are they equal?

HARD
IMPORTANT

Examine the following is a binary operation a*b=a+b2, a,bQ. For binary operation check the commutative and associative property.

HARD
IMPORTANT

Let * be a binary operation in a set Q of rational numbers given as a*b=2a-b2, a,bQ. Find 3*5 and 5*3. Is 3*5=5*3?

MEDIUM
IMPORTANT

Show that the binary operation *:N×NN defined as a*blcma,b is associative.

HARD
IMPORTANT

Consider the set A=1, ω, ω2 of all cube tools of unity. Construct the composition table for multiplication on A. Find the identity element.

HARD
IMPORTANT

Let A=1,-1,i,-i where i=-1. Prepare a composition table for multiplication on A. Find the identity element.

MEDIUM
IMPORTANT

Let A=1,-1,i,-i where i=-1. Prepare a composition table  for multiplication on A. Is it a binary operation?

MEDIUM
IMPORTANT

Let A=1,-1,i,-i where i=-1. Prepare a composition table  for multiplication on A and show that A is closed for multiplication.

HARD
IMPORTANT

Consider the binary operation * defined on the set of rational numbers Q by a*b=a-b+ab. Show that * is neither commutative nor associative.

HARD
IMPORTANT

Let * be a binary operation on R--1, defined by a*b=ab+1. Show that * is neither commutative nor associative.

HARD
IMPORTANT

Is binary operation * defined on the set of all natural numbers N by a*b=a+b2, for all a,bN is commutative. It it associative?

HARD
IMPORTANT

Let a binary operation * on a set A having more than one element, be defined by a*b=a for a,bA. Show that (A, *) is associative, but it has no identity element. Is (A, *) commutative ?

HARD
IMPORTANT

Let a binary operation * on N, the set of all natural numbers, be defined by a*b=ab for a,bN. Show that (N, *) is neither commutative nor associative.

HARD
IMPORTANT

Let Q be the set of non-zero rational numbers and * be a Binary Operation on Q defined bya*b=ab2. Show that all the first five properties hold in Q w.r.t. *.

HARD
IMPORTANT

Prove that in the set 1,-1 with the multiplication as binary operation all the first five properties are satisfied.

HARD
IMPORTANT

Show that all the properties of Binary Operations hold in the set I of all integers with respect to the operation of addition.

EASY
IMPORTANT

Let A be set of all real numbers except -1 and operation * be defined on A as a*b=a+b+ab for all a,bA. 

The value of x in the equation 1*x*3=5 is

EASY
IMPORTANT

Consider a binary operation * on N defined as a*b=1, for all a,bN. Choose the correct answer.