Tangent and Normal to an Ellipse

IMPORTANT

Tangent and Normal to an Ellipse: Overview

This topic covers concepts, such as Parametric Form of Normal to Standard Ellipse, Director Circle of an Ellipse, Parametric Form of Tangent to Standard Ellipse, Point Form of Tangent to Standard Ellipse, Normal to Ellipse, etc.

Important Questions on Tangent and Normal to an Ellipse

HARD
IMPORTANT

Let Ph,k with h<0, k>0 be a point on the ellipse x2a2+y2b2=1, (where a>b>0), whose foci are F1 and F2. The normal at P intersects the major axis at Q. If PF1:PF2=2:1 then QF1:QF2 equals

EASY
IMPORTANT

If the quadrilateral formed by four tangents to the ellipse  x29+y24=1 is a square, then the area (in sq. units) of the square is equal to

HARD
IMPORTANT

If the normal at the point Pθ to the ellipse x212+y28=1 intersects it again at the point S2θ, if the coordinates of Pθ are (-k,0), then find the value of k.

HARD
IMPORTANT

If the normal at the point Pθ to the ellipse x26+y24=1 intersects it again at the point S2θ, then find the coordinates of Pθ.

HARD
IMPORTANT

If the normal at the point Pθ to the ellipse x23+y22=1 intersects it again at the point Q2θ, then find the coordinates of Pθ.

HARD
IMPORTANT

If the normal at the point Pθ to the ellipse x214+y25=1 intersects it again at the point Q2θ, then find the coordinates of Pθ.

MEDIUM
IMPORTANT

The equation of the normal at the point (16,9) to the ellipse 9x2+16y2=144 is 

MEDIUM
IMPORTANT

The equation of the normal at the point (4,3) to the ellipse 9x2+16y2=144 is 

MEDIUM
IMPORTANT

The equation of the normal at the point (2,-1) to the ellipse 9x2+16y2=144 is 

MEDIUM
IMPORTANT

The equation of the normal at the point (1,-1) to the ellipse 9x2+16y2=144 is 

MEDIUM
IMPORTANT

The equation of the normal at the point (1,3) to the ellipse 9x2+16y2=144 is 

HARD
IMPORTANT

The angle is subtended by common tangents of two ellipses 4(x-6)2+25y2=100 and 4(x+3)2+y2=4 at the origin.

HARD
IMPORTANT

The angle is subtended by common tangents of two ellipses 4(x-5)2+25y2=100 and 4(x+2)2+y2=4 at the origin.

HARD
IMPORTANT

Find the angle is subtended by common tangents of two ellipses 4(x-4)2+25y2=100 and 4(x+1)2+y2=4 at the origin.

HARD
IMPORTANT

If the normal at the point Pθ to the ellipse x212+y28=1 intersects it again at the point Q2θ, then find the coordinates of Pθ.

HARD
IMPORTANT

If the normal at the point Pθ to the ellipse x26+y24=1 intersects it again at the point Q2θ, then find the coordinates of Pθ.

HARD
IMPORTANT

If the normal at the point Pθ to the ellipse x23+y22=1 intersects it again at the point Q2θ, then find the coordinates of Pθ.

HARD
IMPORTANT

If the normal at the point Pθ to the ellipse x214+y25=1 intersects it again at the point Q2θ, then find the coordinates of Pθ.

HARD
IMPORTANT

The number of maximum normals that can be drawn from any point to an ellipse x29+y24=1 is 3.

HARD
IMPORTANT

The equation of the normal at the point (2,3) to the ellipse 9x2+16y2=144 is