Integral of Trigonometric Functions

IMPORTANT

Integral of Trigonometric Functions: Overview

This topic deals with the integrals of special trigonometric functions and various forms of trigonometric functions. We will discuss the proof of various forms of standard integrals in brief. We will learn how to find the other forms via examples.

Important Questions on Integral of Trigonometric Functions

EASY
IMPORTANT

Evaluate : tanθ dθ [Take tanθ=t]

HARD
IMPORTANT

Value of   (cos2x) 1 2 sinx dx is equal to

MEDIUM
IMPORTANT

sin2xcos14x3dx

HARD
IMPORTANT

Find the area of the region bounded below by the curve y=12, to the left by the curve y=cosx and above by the curve y=sinx, given that x0,2π

MEDIUM
IMPORTANT

If 1+cos8xtan2x-cot2xdx=fx·cosgx+c, then f14+g14=

EASY
IMPORTANT

sin3xdx+cos2xsinxdx=

EASY
IMPORTANT

If 0πcos23π8-x4-cos211π8+x4dx equal k. Then find the value of k.

EASY
IMPORTANT

Evaluate 0π2cosx-sinxdx

HARD
IMPORTANT

If cosx+x1+sinxdx=fx+3cosx2-sinx2cosx2+sinx2dx+c, then fx=

MEDIUM
IMPORTANT

Integrate  w.r.t.  x :

(i) (1+logx)3x

 

MEDIUM
IMPORTANT

Integrate  w.r.t.  x :

(i) sin x cos4x

 

MEDIUM
IMPORTANT

Integrate  w.r.t.  x :

(i) 1-sin x

 

MEDIUM
IMPORTANT

Integrate  w.r.t.  x :

(i) cos3x

 

MEDIUM
IMPORTANT

Integrate  w.r.t.  x :

(i) sinx-cosx2

 

MEDIUM
IMPORTANT

Integrate  w.r.t.  x :

(i) cos2x2

 

MEDIUM
IMPORTANT

Integrate  w.r.t.  x :

(i) 1(1+sinx)

 

MEDIUM
IMPORTANT

If 1+cos(4x)cot(x)-tan(x)dx=Acos(4x)+B, then A=