Odisha Board Solutions for Chapter: Determinants, Exercise 1: EXERCISES 5 (a)

Author:Odisha Board

Odisha Board Mathematics Solutions for Exercise - Odisha Board Solutions for Chapter: Determinants, Exercise 1: EXERCISES 5 (a)

Attempt the practice questions on Chapter 5: Determinants, Exercise 1: EXERCISES 5 (a) with hints and solutions to strengthen your understanding. Elements of Mathematics Class 12 solutions are prepared by Experienced Embibe Experts.

Questions from Odisha Board Solutions for Chapter: Determinants, Exercise 1: EXERCISES 5 (a) with Hints & Solutions

EASY
12th Odisha Board
IMPORTANT

Prove a+da+d+ka+d+ccc+bcdd+kd+c=abc

EASY
12th Odisha Board
IMPORTANT

Show that by eliminating α and β from the equations aiα+biβ+ci=0, i=1,2,3, we get a1    b1    c1a2    b2    c2a3    b3    c3=0

HARD
12th Odisha Board
IMPORTANT

Prove 1    x    x2x2    1    xx    x2    1=1x32

EASY
12th Odisha Board
IMPORTANT

Prove that the points x1,y1, x2,y2, x3,y3 are collinear if x1    y1    1x2    y2    1x3    y3    1=0

HARD
12th Odisha Board
IMPORTANT

If A+B+C=π, prove that sin2A    cotA    1sin2B    cotB    1sin2C    cotC    1=0.

EASY
12th Odisha Board
IMPORTANT

Eliminate x,y,z from a=xyz, b=yzx, c=zxy

EASY
12th Odisha Board
IMPORTANT

Given the equations x=cy+bz, y=az+cx and z=bx+ay where x, y, z are not all zero, prove that a2+b2+c2+2abc=1 by determinant method.

EASY
12th Odisha Board
IMPORTANT

If ax+hy+g=0, hx+by+f=0 and gx+fy+c=λ are consistent find the value of λ in the form of a determinant.