Series involving Binomial Coefficients

IMPORTANT

Series involving Binomial Coefficients: Overview

This topic covers concepts such as Binomial Series, Use of Differentiation in Finding the Sum of Binomial Series, Use of Integration in Finding the Sum of Binomial Series, Use of Complex Numbers in Finding the Sum of Binomial Series, etc.

Important Questions on Series involving Binomial Coefficients

EASY
IMPORTANT

C0156,C1158,C21510,....C151538 is a bino-harmonic series.

EASY
IMPORTANT

Summation of bino-harmonic series C0na,C1na+d,C2na+2d,....Cnna+nd is given by 

EASY
IMPORTANT

Express the summation of bino-harmonic series C0156,C1158,C21510,....C151536 in the integral form.

EASY
IMPORTANT

Express the summation of bino-harmonic series C0234,C1237,C22310,....C232373 in the integral form.

HARD
IMPORTANT

If 'n' is a positive integer, then r=1nr2·Cr=_____2n-2

HARD
IMPORTANT

If 1+x+x225=Σr=050ar xr, then

 Σr=012a4r=

HARD
IMPORTANT

If 1+x+x225=Σr=050ar xr, then r=016a3r=

MEDIUM
IMPORTANT

The value of sum of the series 3·nC0+ nC1322+ nC2333+ nC3344+... nCn3n+1n+1 is

MEDIUM
IMPORTANT

Evaluate :   2 0 C 0 - 2 0 C 1 + 2 0 C 2 - 2 0 C 3 + ... - ... + 2 0 C 1 0 .

HARD
IMPORTANT

If 1+x+x225=a0+a1x+a2x2+.......+a50x50,  then a0+a2+a4+......+a50 is ______

HARD
IMPORTANT

Value of C010·20C10+10C1·20C9++10C10·20C0 

EASY
IMPORTANT

The value of C02n+C12n+C22n++Cn2n is

EASY
IMPORTANT

Cotyledons are also called-

HARD
IMPORTANT

The sum S=19!+13!7!+15!5!+17!3!+19! equals

HARD
IMPORTANT

If Cr denotes the binomial coefficient nCr then -1C02+2C12+5C22++3n-1Cn2=

MEDIUM
IMPORTANT

The sum 0 i < j 1 0 1 0 C j j C i is equal to

MEDIUM
IMPORTANT

If N is a prime number which divides S=39P19+38P19+37P19+.....+20P19 , then the largest possible value of N among following is

HARD
IMPORTANT

If 1+xn=C0+C1x+C2x2+ +Cnxn, then the value of 0 r  s nr+s Cr+Cs is 

HARD
IMPORTANT

The value of C01.3-C12.3+C23.3-C34.3++-1n Cnn+1.3 is

HARD
IMPORTANT

The A.M. of nC0,nC1,nC2 ,,nCn is: