De Moivre's Theorem

IMPORTANT

De Moivre's Theorem: Overview

This topic covers concepts such as Solving Algebraic Equations Involving Complex Numbers Using De Moivre's Theorem, De Moivre's Theorem, De Moivre's Theorem when N is an Integer, and De Moivre's Theorem when N is a Fractional Number.

Important Questions on De Moivre's Theorem

EASY
IMPORTANT

 For the equation  3x2+px+3=0, p>0 , if one of the root is square of the other, then p is –

MEDIUM
IMPORTANT

Let α, β be the roots of the quadratic equation x2+6x+3=0. Then α23+β23+α14+β14α15+β15+α10+β10 is equal to

MEDIUM
IMPORTANT

Let α, β  be the roots of the equation x2-2x+2=0 Then α14+β14 is equal to

MEDIUM
IMPORTANT

If x2-2x+2=0 has roots α14+β14 is:

MEDIUM
IMPORTANT

-1-i2100 equals -

EASY
IMPORTANT

cosθ+isinθn is equal to

MEDIUM
IMPORTANT

If 3+i3-im=1,2022<m<2029, then m=

EASY
IMPORTANT

One of the values of -32i25 is

MEDIUM
IMPORTANT

If x6=4-3i5, then the product of all of its roots is (where θ=-tan-134)

MEDIUM
IMPORTANT

Value of cosθ+isinθsinθ+icosθ8+1+cosθ-isinθ1+cosθ+isinθ16 is

EASY
IMPORTANT

sinθ-icosθ3 is equal to

MEDIUM
IMPORTANT

If x+1x=2 then x29+1x29=

MEDIUM
IMPORTANT

If z=1 and z-1, then 1+z1+z¯4+ 1+z¯1+z4 is

MEDIUM
IMPORTANT

What is the product of all the values of (1-i)25=

MEDIUM
IMPORTANT

If n is a positive integer, then (1+i3)n+(1-i3)n=

HARD
IMPORTANT

If Z+1Z=2sin6°, then the value of Z1000+1Z1000 is equal to

HARD
IMPORTANT

The value of -14 is 

MEDIUM
IMPORTANT

If z=32+i25+32i25+1+i2+1i2, then  (where i=-1)

MEDIUM
IMPORTANT

Consider a regular 10-gon with its vertices on the unit circle. With one vertex fixed, draw straight lines to the other 9 vertices. Call them L1, L2,,L9 and denote their lengths by l1,l2,,l9 respectively. Then the product l1l2l9 is

HARD
IMPORTANT

If n is an integer and z=cisθ, then z2n-1z2n+1=