Modulus and Argument of Complex Numbers

IMPORTANT

Modulus and Argument of Complex Numbers: Overview

This topic covers concepts, such as, Modulus of a Complex Number, Modulus of Conjugate of a Complex Number, Properties of Argument of a Complex Number & Argument of Conjugate of a Complex Number etc.

Important Questions on Modulus and Argument of Complex Numbers

EASY
IMPORTANT

If argz<0, then argzargz=

EASY
IMPORTANT

Let z and  w be two non-zero complex numbers such that  z=w  and  argz+argw=π  then z equals –

EASY
IMPORTANT

The number of integer solutions of the equation 1-ix=2x is

EASY
IMPORTANT

Define f:CR by f(z)=|z| zC. Then which of the following is false?

EASY
IMPORTANT

If zC, then the minimum value of |z|+|2z-3|+|z-1| is

EASY
IMPORTANT

For two complex numbers z1,z2 the relation |z1+z2|=|z1|+|z2| hold, if

MEDIUM
IMPORTANT

In the Argand plane if O, P, Q represent respectively the origin, the complex number z and z + iz, then angle OPQ is

MEDIUM
IMPORTANT

If 3+isinθ4-icosθ,θ0,2π, is a real number, then an argument of sinθ+icosθ is

EASY
IMPORTANT

Statement I  Both z1 and z2 are purely real , if  arg (z1 z2) = 2π  (z1 and z2 have principle arguments).
Statement II Principle arguments of complex number lies between (-π, π).

MEDIUM
IMPORTANT

Which of the following is correct for any two complex numbers z1 and z2?

EASY
IMPORTANT

If z=1, z'=1+z2z, then :

MEDIUM
IMPORTANT

Let z be a complex number such that z-iz+2i=1 and z=52 . Then the value of z+3i is

EASY
IMPORTANT

If z1, z2, z3 represent the vertices of an equilateral triangle such that |z1|=|z2|=|z3|, then

MEDIUM
IMPORTANT

If z=1, z'=1+z2z, then :

EASY
IMPORTANT

If P represents z=x+iy in the argand plane z-12+z+12=4, then locus of P is (where i=-1)

MEDIUM
IMPORTANT

If z1,z2 and z3,z4 are two pairs of complex conjugate numbers, then argz1z4+argz2z3 can be equal to

MEDIUM
IMPORTANT

If z=x+iy and z-2+2 i=4 then the locus of z in the complex plane is

MEDIUM
IMPORTANT

If z=12+3 i2 then z=

EASY
IMPORTANT

If z is a purely imaginary number and Im z<0, then amp z=

EASY
IMPORTANT

The principle amplitude of -1-i is