Relation between A.M., G.M., H.M.

IMPORTANT

Relation between A.M., G.M., H.M.: Overview

This topic covers concepts, such as, Relationship between Arithmetic Mean and Geometric Mean of Two Numbers, Relation between A.M., G.M. and H.M. & AM-GM-HM Inequality etc.

Important Questions on Relation between A.M., G.M., H.M.

MEDIUM
IMPORTANT

If a1,a2,.....an are positive real numbers whose product is a fixed number e, the minimum value of a1+a2+a3+.......+an-1+2an is

EASY
IMPORTANT

If a1, a2, .......an are positive real numbers whose product is a fixed number e, the minimum value of a1+a2+ .......+2an is

HARD
IMPORTANT

If xyz=2 and x, y, z>0, then minimum value of 2+x 2+y 2+z is

HARD
IMPORTANT

If fx=sinx+cosecx2+cosx+secx2+tanx+cotx23, then the minimum value of fx is 

MEDIUM
IMPORTANT

If a,b,c are positive real numbers, then minimum value of a+b+ca2+b2+c2abc is

EASY
IMPORTANT

Let x and y be two positive real numbers such that x+y=1. Then the minimum value of 1x+1y is-

MEDIUM
IMPORTANT

The number of different possible values for the sum x+y+z, where x, y, z are real number such that x4+4y4+16z4+64=32xyz is

EASY
IMPORTANT

The number of three digit numbers abc¯ such that the arithmetic mean of b & c and the square of their geometric mean are equal is

HARD
IMPORTANT

If x > m , y > n , z > r (x, y, z > 0) such that x n r m y r m n z = 0.

 The greatest value of xyz x - m y - n z - r   is 

HARD
IMPORTANT

If x > m , y > n , z > r (x, y, z > 0) such that x n r m y r m n z = 0.

The value of m x - m + y y - n + r z - r   is

HARD
IMPORTANT

If x>m,y>n,z>r(x,y,z > 0) such that xnrmyrmnz=0. The value of xx-m+yy-n+zz-r, is

HARD
IMPORTANT

If x, y(0,), then the least possible value of x100+100x+y50+50y is

HARD
IMPORTANT

If x and y are positive real numbers and m, n are any positive integers then xnym1+x2n1+y2m can be :

HARD
IMPORTANT

If the first and 2n-1thterms of an A.P, G.P and H.P with positive terms are equal and their nth terms are a, b, c respectively, then which of the following options must be correct: 

HARD
IMPORTANT

Let a, x, b be in AP ; a, y, b are in GP and a, z, b are in HP where a and b are distinct positive real number. If x=y+2 and a=5z, then :

MEDIUM
IMPORTANT

If ai>0 for all iN, then :

HARD
IMPORTANT

Let 1, abc, a2b2c2 are in A.P. (a, b, c>0), then minimum value of 27 a+8 b+125 c is :

EASY
IMPORTANT

Statement 127abca+b+c3 and 3a+4b+5c=12 then 1a2+1b2+1c2=10, wherea, b, c  positive real number.
Statement 2: For positive numbers, AM>GM.

HARD
IMPORTANT

If a, b & c are positive real numbers and {1+a1+b1+c}7>k7a4b4c4, then maximum integer value of k is

HARD
IMPORTANT

If λ, μ be real numbers such that x3-λx2+μx-6=0 has its roots real and positive then the minimum value of μ  is 653λ, then the value of λ is