Types of Relations

IMPORTANT

Types of Relations: Overview

This topic covers concepts, such as Types of Relations, Empty Relation on Sets, Universal Relation on Sets, Identity Relation on Sets, Reflexive Relation on Sets, Transitive Relation on Sets & Equivalence Relation on Sets etc.

Important Questions on Types of Relations

EASY
IMPORTANT

Let A={4,5,6} and relation R on set A as R=x,y;|x-y|=10.Check whether the relation R is an empty relation or not. Explain your answer.

EASY
IMPORTANT

Let A={1,2,3,4} and relation R on set A as R=x,y;|x-y|=7.Check whether the relation R is an empty relation or not. Explain your answer.

EASY
IMPORTANT

Let A={1,2,3} and relation R on set A as R=x,y;|x-y|=8.Check whether the relation R is an empty relation or not. Explain your answer.

EASY
IMPORTANT

Let A= Set of all students in a girls school and we define relation R on set A as R={(a,b):a and b are brothers }.Check whether the relation R is an empty relation or not. Explain your answer.

EASY
IMPORTANT

A relation R on set A={4,5,6} is defined by R={(x,y)R:|x-y|0}. Check whether the relation R is universal relation or not. Explain your answer.

EASY
IMPORTANT

A relation R on set A={1,2,3,4,5,6} is defined by R={(a,b)R:|a-b|0}. Check whether the relation R is universal relation or not. Explain your answer.

EASY
IMPORTANT

Let A=Set of all students in a girls school and we define relation R on set A as R={(a,b): height of a&b is greater than 10 cm}. Check whether the relation R is universal relation or not. Explain.

EASY
IMPORTANT

If A=5 & B=4 then the number of elements in the largest relation that can be defined from A into B is.

EASY
IMPORTANT

Let S be the set of all straight lines in a plane. Let R be a relation on S defined by a R b ab. Then, R is

EASY
IMPORTANT

RA×A (where A0) is an equivalence relation if R is

HARD
IMPORTANT

Let Z denote the set of all integers. If a relation R is defined on Z as follows:
( x, y) R if and only if x is multiple of y, then R is

EASY
IMPORTANT

The relation S=3, 3, ( 4,4 ) on the set A=3,  4, 5 is ________.

EASY
IMPORTANT

Let R=3,  3,6, 6,9, 9,12, 12,6, 12,3,9,3, 12,3, 6 be a relation on the set A=3,6,9,12. The relation is

EASY
IMPORTANT

Let R be a relation on the set N be defined by  x, y| x, yN, 2x + y = 41 . Then R is

EASY
IMPORTANT

Let R and S be two non-void relations on a set A . Which of the following statements is false

EASY
IMPORTANT

Let R be a relation on the set N of natural numbers defined by nRmn is a factor of m ( i.e. n|m ). Then R is

EASY
IMPORTANT

With reference to a universal set, the inclusion of a subset in another, is relation, which is

EASY
IMPORTANT

Let R be the relation on the set R of all real numbers defined by a R b iff |a-b|1 . Then R is

EASY
IMPORTANT

The number of reflexive relations of a set with four elements is equal to

EASY
IMPORTANT

x2=xy is a relation which is