Properties of Differentiable Function

IMPORTANT

Properties of Differentiable Function: Overview

This topic covers concepts, such as, Properties of Differentiable Functions, Differentiability of Sum of Two Functions, Differentiability of Composition of Functions & Methods to Solve Problems Based on Functional Relations etc.

Important Questions on Properties of Differentiable Function

MEDIUM
IMPORTANT

A function f:RR satisfies the relation f(x+y)=f(x)·f(y), x, yR and f(x)0, xR. If 'f' is differentiable at x=0, f'(0)=4 and f(6)=3, then f'(6)= _____

EASY
IMPORTANT

If 3x+4x+12 x-1=Ax-1+Bx+1+Cx+12 , then A=

MEDIUM
IMPORTANT

Let gx+y2=gx+gy2, xR, yR. If g'(0)=-1 and g(0)=1, then g(x) is a

HARD
IMPORTANT

Let f:-1,1R be a differentiable function satisfying f'x4=16fx2 for all x-1,1 f0=0. The number of such functions is

HARD
IMPORTANT

Evaluate the summation f12015+f22015+f32015++f40292015 , given f(x)=9x9x+9.

MEDIUM
IMPORTANT

Let f(x+y+z)=f(x)·f(y)·f(z) for all x, y, z where f(x)0 for all x. If f(2)=4, f'(0)=3, then find f'(2).

MEDIUM
IMPORTANT

If fx+y+fx-y=2fxf(y) x, yR & f0=0, then

MEDIUM
IMPORTANT

-5151dx3+fx has the value equal to :

HARD
IMPORTANT

f is a real valued function from R to R such that f(x)+f(x)=2,then 1x1+xf1(t)dt=

HARD
IMPORTANT

If f(x+f(y))=f(x)+y   x,yR and f(0)=1, then 010f(10-x)dx is equal to

HARD
IMPORTANT

Consider the function fx=minx2-4,x2-1, then the number of points where fx is non-differentiable is/are

HARD
IMPORTANT

Let fx be a non-negative differentiable function on [0,) such that f0=0 and f'x2fx for all x>0. Then, on [0,)

MEDIUM
IMPORTANT

Let f:RR be defined by fx=x1+x2 then fofof x is

EASY
IMPORTANT

If fog=sinx and gof=sin2x , then fx and gx are

EASY
IMPORTANT

If 3x+4x+12 x-1=Ax-1+Bx+1+Cx+12 , then A=

MEDIUM
IMPORTANT

If f is twice differentiable function such that f"(x) = -f(x), f'(x) = g(x), h(x) =  fx2+gx2 and h(5) = 11, then h(10) equal to

EASY
IMPORTANT

If fx be even function and f0 exist then f0 equals

HARD
IMPORTANT

A function f:RR satisfies sinx cosyf2x+2y-f2x-2y=cosx sinyf2x+2y+f2x- 2y. If f'0=12, then

HARD
IMPORTANT

Let fx+y2=fx+fy2 for real values of x and y . If f'0 exist and equals -1 and f0=1, then f'2 is equal to-

HARD
IMPORTANT

Let  f : R R be a function such that f x + y 3 = f x + f y 3 f 0 = 0   and   f 0 = 3  then f(x) is :