Standard Limits

IMPORTANT

Standard Limits: Overview

This topic covers concepts, such as, Standard Limits Involving Trigonometric Functions, Standard Limits in Calculus, Standard Limits Involving Logarithmic Functions & Standard Limits Involving Inverse Trigonometric Functions etc.

Important Questions on Standard Limits

HARD
IMPORTANT

If  f n,  θ = Π r = 1 n 1 - tan 2 θ 2 r , then compute Lim n  f  n θ       { given θ0 }

HARD
IMPORTANT

If limx0sin(nx)[(an)nxtanx]x2=0, (n>0) then the value of 'a' is equal to

MEDIUM
IMPORTANT

What would be the result on differentiating   cosx with respect to x from first principle:

MEDIUM
IMPORTANT

If [.] here denotes the greatest integer function, limx0x71x3=

MEDIUM
IMPORTANT

limx0+xSin-12x1+x2Cos-11-x21+x2Tan-13x-x31-3x2=

MEDIUM
IMPORTANT

The limit limx11-cos2(x-1)x-1_________

EASY
IMPORTANT

limx(-3)sin-1(x+3)x2+3x=

EASY
IMPORTANT

limx0sinaxtanbx=

HARD
IMPORTANT

The value oflimnsin40(n!xπ), where nN and x is a rational number, is:

EASY
IMPORTANT

Limx01-cos3xx.sinx.cosx equals

MEDIUM
IMPORTANT

limx01-cos2x3+cosxxtan4x is equal to

EASY
IMPORTANT

limxπ6sin2xsinx is equal to

EASY
IMPORTANT

limx0tanπ2x2x2tanπ2sin2x denotes the greatest integers function

EASY
IMPORTANT

limxπ6sin2xsinx is equal to

MEDIUM
IMPORTANT

Limx -1cos2-cos2xx2-x equals

HARD
IMPORTANT

Let fR → R be such that f1=2f'1=4, then find the limxf1+x+x2+xf1+xf11xx+1.

HARD
IMPORTANT

limx0ax2-bx2x2=

MEDIUM
IMPORTANT

Evaluate:limx0esinx-1x=

EASY
IMPORTANT

limx0e2x-e-2xx=

MEDIUM
IMPORTANT

limx0e13x-e7xx=