Tangent and Normal to an Ellipse

IMPORTANT

Tangent and Normal to an Ellipse: Overview

This topic covers concepts such as Ellipse and a Line, Position of a Line with Respect to an Ellipse, Intersection Points of a Line and an Ellipse, Condition for Tangency to Ellipse, Tangent to Ellipse, Point Form of Tangent to Standard Ellipse, etc.

Important Questions on Tangent and Normal to an Ellipse

HARD
IMPORTANT

If a line px+qy=12 is a tangent to the ellipse 4x2+9y2=16, then pq can not be equal to :

MEDIUM
IMPORTANT

Find coordinate point of contact of tangent -4x+10y=25 to an ellipse x225+y24=1

MEDIUM
IMPORTANT

Find coordinate point of contact of tangent -3x+10y=25 to an ellipse x225+y24=1

HARD
IMPORTANT

The angle is subtended by common tangents of two ellipses 4(x-6)2+25y2=100 and 4(x+3)2+y2=4 at the origin.

HARD
IMPORTANT

The angle is subtended by common tangents of two ellipses 4(x-5)2+25y2=100 and 4(x+2)2+y2=4 at the origin.

HARD
IMPORTANT

Find the angle is subtended by common tangents of two ellipses 4(x-4)2+25y2=100 and 4(x+1)2+y2=4 at the origin.

HARD
IMPORTANT

If the normal at the point Pθ to the ellipse x212+y28=1 intersects it again at the point Q2θ, then find the coordinates of Pθ.

HARD
IMPORTANT

If the normal at the point Pθ to the ellipse x26+y24=1 intersects it again at the point Q2θ, then find the coordinates of Pθ.

HARD
IMPORTANT

If the normal at the point Pθ to the ellipse x23+y22=1 intersects it again at the point Q2θ, then find the coordinates of Pθ.

HARD
IMPORTANT

If the normal at the point Pθ to the ellipse x214+y25=1 intersects it again at the point Q2θ, then find the coordinates of Pθ.

HARD
IMPORTANT

The number of maximum normals that can be drawn from any point to an ellipse x29+y24=1 is 3.

HARD
IMPORTANT

The equation of the normal at the point (2,3) to the ellipse 9x2+16y2=144 is 

HARD
IMPORTANT

The equation of the normal at the point (2,3) to the ellipse 9x2+16y2=180 is 

HARD
IMPORTANT

The number of maximum normals that can be drawn from any point to an ellipse x2a2+y2b2=1.

HARD
IMPORTANT

The number of distinct normals that can be drawn from the point (0,6) to the ellipse x2169+y225=1.

MEDIUM
IMPORTANT

Find the equation of the chord joining two points P(6cosθ,5sinθ) and Q(6cosϕ,5sinϕ) on the ellipse.

MEDIUM
IMPORTANT

Find the equation of the chord joining two points P(5cosθ,3sinθ) and Q(5cosϕ,3sinϕ) on the ellipse.

MEDIUM
IMPORTANT

Find the equation of the chord joining two points P(4cosθ,3sinθ) and Q(4cosϕ,3sinϕ) on the ellipse.

MEDIUM
IMPORTANT

Find the equation of the chord joining two points P(3cosθ,2sinθ) and Q(3cosϕ,2sinϕ) on the ellipse.

MEDIUM
IMPORTANT

Prove that, the equation of the chord joining two points having eccentric angles θ and ϕ on the ellipse is xacosθ+ϕ2+ybsinθ+ϕ2=cosθ-ϕ2.