Distance Formula and Section Formula in 3D

IMPORTANT

Distance Formula and Section Formula in 3D: Overview

This topic covers concepts, such as, Distance Formula in 3D: Cartesian Form, Distances of a Point from Coordinate Planes, Section Formula in 3D & Locus of a Point in 3D etc.

Important Questions on Distance Formula and Section Formula in 3D

MEDIUM
IMPORTANT

The incentre of the triangle with vertices 1 , 3 , (0, 0) and (2, 0) is

EASY
IMPORTANT

The points A(2,3,4),B(-1,2,-3) and C(-4,1,-10) are collinear.

HARD
IMPORTANT

If D, E, F are midpoints of sides BC, CA and AB respectively of triangle ABC, then prove that DG¯ + EG¯+FG¯ = 0¯.

HARD
IMPORTANT

If ABC is a triangle whose orthocenter is P and the circumcenter is Q, then prove that PA¯+PC¯+PB¯=PQ¯.

MEDIUM
IMPORTANT

If A, B, C, D are four non-collinear points in the plane such that AD¯ + BD¯ + CD¯ = 0¯, then prove that the point D is the centroid of the triangle ABC.

HARD
IMPORTANT

If G1 and G2 are centroids of the triangles ABC and PQR respectively, then prove that AP¯+BQ¯+CR¯=3G¯1G2¯.

HARD
IMPORTANT

Verify whether the four points 5, -1, 1, -1, -3, 4, 7, -4, 7 and 1, -6, 10 are the vertices of rhombus or not.

HARD
IMPORTANT

Show that the points 0, 7, 10, -1, 6, 6 and -4, 9, 6 form a right angled triangle.

MEDIUM
IMPORTANT

Show that points 2, -1, -1, 4, -3, 0 and 0, 1, -2 are collinear.

MEDIUM
IMPORTANT

Find the values of λ for which the points (6, -1, 2),(8, -7, λ) and 5, 2, 4 are collinear.

EASY
IMPORTANT

The locus of a point P such that PA+PB=4 where A2, 3, 4 and B-2, 3, 4 is

EASY
IMPORTANT

The equation of the locus of a point Px, y, z such that it's distance from the x-axis is equal to its distance from the plane x+z=1 is

EASY
IMPORTANT

Find the position vector of a point R  which divides the line joining two points P and Q  whose position vectors are P(i^+2j^-k^)  and Q(-i^+j^+k^) respectively, in the ratio  2 : 1   externally

 

 

EASY
IMPORTANT

Find the position vector of a point R which divides the line joining two points P and Q whose position vectors are P(i^+2j^-k^)  and Q(-i^+j^+k^) respectively, in the ratio  2 : 1  internally

 

HARD
IMPORTANT

ABCD is a parallelogram. L is a point on BC which divides BC in the ratio1:2 . AL intersects BD at P.M is a point on DC which divides DC  in the ratio 1:2 and AM intersects BD in Q.

Point Q divides DB in the ratio

HARD
IMPORTANT

ABCD is a parallelogram. L is a point on BC which divides BC in the ratio1:2 . AL intersects BD at P.M is a point on DC which divides DC  in the ratio 1:2 and AM intersects BD in Q.

 Point P divides AL in the ratio

EASY
IMPORTANT

The coordinates of points of trisection of the line joining the points A(x1,y1,z1) & B(x2,y2,z2) are the points which divide A & B in the ratio 1:3 & 3:1 externally.

EASY
IMPORTANT

Find the coordinates of points of trisection of line joining the points (2,3,4) & (1,2,7)

MEDIUM
IMPORTANT

if the points (1,1, λ) and (-3,0,1) are equidistant from the plane r.3i^+4j^-12k^+13=0, find the value of λ.

MEDIUM
IMPORTANT

If the distance of the point i^+2j^-k^ from the plane r·i^-2j^+4k^=10 is 17k, then the find the value of k.