Angle between Two Lines

IMPORTANT

Angle between Two Lines: Overview

This topic covers concepts, such as, Angle between Lines in Vector Form, Angle between Two Lines in 3D, Parallel Lines in 3D & Perpendicular Lines in 3D etc.

Important Questions on Angle between Two Lines

HARD
IMPORTANT

Find the acute angle between the line joining points 2, 1, 3 and 1, -1, 2 and the line having direction ratios 2, 1, -1.         [Enter the value in degrees excluding degree symbol]

HARD
IMPORTANT

Find the angle between the pair of lines r¯=3i^+2j^-4k^+λ(i^+2j^+2k^) and r¯=5i^-2k^+μ(3i^+2j^+6k^).
 

HARD
IMPORTANT

If l1, m1, n1;l2, m2, n2 and l3, m3, n3 are direction cosines of three mutually perpendicular lines OA, OB, OC, show that the line OP whose direction cosines are proportional to l1+l2+l3, m1+m2+m3, n1+n2+n3 makes equal angles with lines OA, OB and OC.

HARD
IMPORTANT

Directions ratios of two lines satisfy the relation 2a-b+2c=0 and ab+bc+ca=0. Show that the lines are perpendicular.

HARD
IMPORTANT

Find the direction cosines of the line which is perpendicular to the lines with direction ratios 4, 1, 3 and 2, -3, 1.

MEDIUM
IMPORTANT

Find the angle between the lines whose direction ratios are 4, -3, 5 and 3, 4, 5.         [Enter the value in degrees excluding degree symbol]

HARD
IMPORTANT

If the direction ratios of two vectors are connected by the relations p+q+r=0 and p2+q2-r2=0, find the angle between them.

HARD
IMPORTANT

Find the direction cosines of the vector which is perpendicular to the vectors with direction ratios -1, 2, 2 and 0, 2, 1.

HARD
IMPORTANT

Find the direction ratios of a vector perpendicular to the two lines whose direction ratios are 1, 3, 2 and -1, 1, 2.

HARD
IMPORTANT

If a line drawn from the point A(1, 2, 1) is perpendicular to the line joining P(1, 4, 6) and Q(5, 4, 4), then find the coordinates of the foot of the perpendicular.

MEDIUM
IMPORTANT

Find x, if ΔABC is right angled at A, where A(4, 2, 3), B(3, 1, 8), C(x, -1, 2).

MEDIUM
IMPORTANT

Find k, if ABC is right angled at B, where A(5, 6, 4), B(4, 4, 1), C(8, 2, k).

MEDIUM
IMPORTANT

Show that the vector AB¯ is perpendicular to CD¯ where A(3, 4, -2), B(1, -1, 2), C(0, 3, 2) and D(3, 5, 6).

HARD
IMPORTANT

If the angle between the vectors a¯ and b¯ having direction ratios 1, 2, 1 and 1,3k, 1 is π4, find k.

MEDIUM
IMPORTANT

Find the measure of acute angle between the lines whose direction ratios are 1, 2, 2 and -3, 6, -2.

MEDIUM
IMPORTANT

Find the measure of acute angle between the lines whose direction ratios are 3, 2, 6 and -2, 1, 2

EASY
IMPORTANT

If the angle between the lines whose direction cosines are given by the equation l+m+n=0,l2+m2-n2=0 is πk, then find the value of k.

EASY
IMPORTANT

If the angles between the lines r¯=3i^-2j^+6k^+λ(2i^+j^+2k^) and r¯=(2j^-5k^)+μ(6i^+3j^+2k^) is θ=cos-1k, then the value of k is

EASY
IMPORTANT

If the angle between the lines r=3i^-2j^+6k^+λ(2i^+j^+2k^) and r=(2j^-5k^)+μ(6i^+3j^+2k^) is θ=cos-1k, then the value of k is

EASY
IMPORTANT

Find the value of 7k so that the lines are at right angles.

x-1-3=y-22k=z-32 and x-13k=y-11=z-6-5