Differentiability

IMPORTANT

Differentiability: Overview

This topic covers concepts, such as, Differentiability of a Function, Differentiability of a Function at a Point, Relation between Differentiability and Continuity & Differentiability of Standard Functions etc.

Important Questions on Differentiability

HARD
IMPORTANT

Let f(x)={sinxxx01x=0 find f''(0)(if  it  exists).

MEDIUM
IMPORTANT

A twice differentiable function f(x) is defined for all real numbers and satisfies the following conditions, f0=2;  f'0=-5 and f''0=3. The function g(x) is defined by g(x)=eax+fxxR, where a is any constant. If g'(0)+g"(0)=0. Then a can be equal to 

EASY
IMPORTANT

Let g(x) be a polynomial of degree one & f(x) be defined by  f x = [ g x , x 0 1 + x 2 + x 1 / x , x > 0  such that  f(x) is continuous f'1=f-1, then g(x) is

HARD
IMPORTANT

The domain of the derivative of the function f(x) = { tan - 1 x if  x 1 1 2 x - 1 if  x > 1 is

EASY
IMPORTANT

fx=1+x.cosx; 0<xπ2, where  denotes greatest integer function then,

MEDIUM
IMPORTANT

Consider the function fx=x2-2x and gx=-x 
Statement-1: The composite function Fx=fgx is not derivable at x=0.
Statement-2: F'0+=2 and F'0-=-2.

HARD
IMPORTANT

Let f(x)=[n+psinx],x(0,π),nI and p is a prime number. The number of points where f( x ) is not differentiable is

( Here x represents the greatest integer less than or equal to x )

EASY
IMPORTANT

The set of all points where the function  f x = x 1 + x  is differentiable is:

HARD
IMPORTANT

Givenf( x )= [ log a ( a|[ x ]+[ x ]| ) x ( ( a 2 ( [ x ]+[ x ] |x| ) )5 3+ 1 |x| )for| x |0;a>1 0forx=0 where [ ] represent

integral part function, then:

HARD
IMPORTANT

For what triplets of real numbers a, b ,c with  a 0  the function fx=x,x1ax2+bx+c,otherwiseis differentiable for all x?

HARD
IMPORTANT

The number of points at which the function fx=maxa-x, a+x, b,  -<x<0<a<b can not be differentiable is

MEDIUM
IMPORTANT

If fx=sinx and gx=x3, then identify which of the following is correct for the function fgx.

EASY
IMPORTANT

On differentiating  tanx with respect to x from first principle, the solution would be:

MEDIUM
IMPORTANT

Find the set of points where fx=xx is differentiable

EASY
IMPORTANT

Find the slope of the tangent at a point 7,78 to the curve y=x2+4x+1.

EASY
IMPORTANT

Find the slope of the tangent at a point -5,-6 to the curve y=x5+2x2+1.

EASY
IMPORTANT

Find the slope of the tangent at a point 1,2 to the curve y=4x3.

EASY
IMPORTANT

Find the slope of the tangent at a point 5,6 to the curve y=x4+2x2+x.

EASY
IMPORTANT

Find the slope of the tangent at a point 3,4 to the curve y=x3+3x2+1.

MEDIUM
IMPORTANT

If f(x)=x2+qx+r, q2-4r>0, q<0 and r>0, then number of points where function fx is not differentiable.