Algebra of Functions

IMPORTANT

Algebra of Functions: Overview

This topic covers concepts such as Algebraic Operations on Functions, Addition of Two or More Functions, Subtraction of Two or More Functions, Multiplication of Two or More Functions, Multiplication of a Function by a Scalar, etc.

Important Questions on Algebra of Functions

MEDIUM
IMPORTANT

The function fx=0 has eight distinct real solution and f also satisfy f4+x=f4-x. The sum of all the eight solutions of fx=0 is –

HARD
IMPORTANT

If f(x)+2f(1-x)=x2+1,  xR, then the range of f is

MEDIUM
IMPORTANT

If g(x)=12ex+e-x and f(x)=12ex-e-x then show that

[b] g(x)]2-[f(x)]2=1

MEDIUM
IMPORTANT

If g(x)=12ex+e-x and f(x)=12ex-e-x then show that

[a] g(x+y)=g(x) g(y)+f(x) f(y)

HARD
IMPORTANT

If $f(x)=x+1, g(x)=x-2$, then solve the equation $|f(x)+g(x)|=|f(x)|+|g(x)|$.

MEDIUM
IMPORTANT

If $f(x)=\sin (\log x)$ and $g(x)=\cos (\log x)$, then find the value of $f(x) \cdot g(y)-\frac{1}{2}\left[f(x y)+f\left(\frac{x}{y}\right)\right]$.

EASY
IMPORTANT

If $f(x)=3 \sin x$ and $\phi(x)=\sin ^{2} x$, then find the value of $(f+\phi)\left(\frac{\pi}{3}\right)$.

HARD
IMPORTANT

If $f(x)=x^{3}+2 x^{2}$ and $g(x)=3 x^{2}-1$, then find $f+g, f-g, f g$ and $\frac{f}{g}$ and state their domains.

EASY
IMPORTANT

Let $f$ be a function satisfying $f(x+y)=f(x)+f(y)$ for all real $x$ and $y$ and if $f(1)=k$, then show that $f(n)=n k $ for all +ve integer $n$.

HARD
IMPORTANT

If f2x·f1-x1+x=x3x-1,1 and fx0, then the value of f-2 is (where . is the greatest integer function).

MEDIUM
IMPORTANT

If f2x·f1-x1+x=x3, x-1, 1 and fx0], then find f-2 (where . is the greatest integer function).

MEDIUM
IMPORTANT

Let A denote the set of all real numbers x such that x3-[x]3=(x-[x])3, where [x] is the greatest integer less than or equal to x. Then

EASY
IMPORTANT

If fx=x2 and gx=2x-1, then find the value of f-g41.

EASY
IMPORTANT

If fx=x2 and gx=2x+1, then find the value of f+g59.

MEDIUM
IMPORTANT

Number of functions f:0,10,1 satisfying fx-fy=x-y for all x, y in 0,1 is

MEDIUM
IMPORTANT

Let fx=xsin1x , when x01 , when x=0 and A=xR:fx=1. Then, A has

EASY
IMPORTANT

Reduction of the proper fraction fxgx into a sum of partial fraction depends on the factorization of

HARD
IMPORTANT

Exactly how many functions f:QQ exist such that fx+y=fx+fy andfxy=fxfy for all x, yQ ?

EASY
IMPORTANT

If f:RR is defined as fx=2020x2020x+2020, xR, then r=140392fr4040=

EASY
IMPORTANT

If fx2=fx2+f1 holds good, then find fx