Introduction to Limits

IMPORTANT

Introduction to Limits: Overview

This topic covers concepts such as Algebra of Limits, Standard Limits in Calculus, Limits, Definition of Limit of a Function, Left Hand & Right Hand Limits, Existence of Limits in Calculus, Finite and Infinite Limits, etc.

Important Questions on Introduction to Limits

MEDIUM
IMPORTANT

If limxeμx+5e100x+7 exists, then sum of all possible positive integral values of μ is

MEDIUM
IMPORTANT

It is given that limx0x2a+xr1p1-cosx=. If P=3 and = 1 , then the value of a is equal to

HARD
IMPORTANT

If limx0sin(nx)[(an)nxtanx]x2=0, (n>0) then the value of 'a' is equal to

MEDIUM
IMPORTANT

What would be the result on differentiating   cosx with respect to x from first principle:

EASY
IMPORTANT

Show that limx0 10x-2x-5x+1x2=log2.log5

EASY
IMPORTANT

Evaluate:

limxx4+3x3-2x2+5x3-3x2+2x-1

EASY
IMPORTANT

If f(x)=x+2,x<14x-1,1x3x2+5,x>3then find the value of limx1+f(x)limx1-f(x)limx3+f(x) and limx3f(x)

HARD
IMPORTANT

Evaluate the limn1n3k=1nk2x, (where x denotes greatest integer function less than or equal to x).

MEDIUM
IMPORTANT

Evaluate:

limx0ex+tanx-1log1+x

MEDIUM
IMPORTANT

Evaluate:

limx0e3x-1log1+5x

EASY
IMPORTANT

Evaluate:

limx0log1+sinxx

MEDIUM
IMPORTANT

Evaluate:

limx0log1+4xx

MEDIUM
IMPORTANT

Evaluate:

limx0esinpx-esinqxx

HARD
IMPORTANT

limx0ax2-bx2x2=

EASY
IMPORTANT

limx0e2x-e-2xx=

MEDIUM
IMPORTANT

limx0e13x-e7xx=

MEDIUM
IMPORTANT

Evaluate:

limx0sin2x1+xsinx-cosx

MEDIUM
IMPORTANT

Evaluate:

limx12sinπx2-cosπx212-x

HARD
IMPORTANT

Evaluate:

limxysin2x-sin2yx2-y2

MEDIUM
IMPORTANT

Evaluate:

limxπ3sinx-π31-2cosx