Basics of Limits

IMPORTANT

Basics of Limits: Overview

This topic covers concepts, such as, Limits, Definition of Limit of a Function, Left Hand & Right Hand Limits, Existence of Limits in Calculus & Finite and Infinite Limits etc.

Important Questions on Basics of Limits

MEDIUM
IMPORTANT

If limxeμx+5e100x+7 exists, then sum of all possible positive integral values of μ is

MEDIUM
IMPORTANT

Evaluate the limit limx02xx+x2.

HARD
IMPORTANT

If fx=8x3+3x, then limxf-18x-f-1xx13 is

EASY
IMPORTANT

Let fx=x;     x<13;    x=12-x2;   1<x2x-3;     x>2

Evaluate each of the following limits, if exists:

i limx1-fx

ii limx1+fx

iii limx1fx

iv limx2-fx

v limx2+fx

vi limx2fx

MEDIUM
IMPORTANT

limnn13+23+33+....+n3212+22+32+...+n23=

MEDIUM
IMPORTANT

Evaluate: limn13+23+33+...+n34n8+1

HARD
IMPORTANT

Find limn1+1a11+1a21+1a3......1+1an where a1=1 and an=n1+an-1; n2.

MEDIUM
IMPORTANT

limnCn2n1n=

EASY
IMPORTANT

Solve: limx0xαex; αR+

MEDIUM
IMPORTANT

Let the variable xn be determined by the following law of formation

x0=ax1=a+ax2=a+a+ax3=a+a+a+a.

Find limnxn.

MEDIUM
IMPORTANT

limx11-x2+21-x2+31-x2+...+x1-x2 is:

MEDIUM
IMPORTANT

Evaluate limnnsin2π1+n2; nN.

HARD
IMPORTANT

Function whose jump (non-negative difference of LHL & RHL) of discontinuity is greater than or equal to one, is/are -

MEDIUM
IMPORTANT

limxx-sincostanx4x+cossinx equals

MEDIUM
IMPORTANT

For x0 determine the order of smallness, relative to the infinitesimal βx=x, of the following infinitesimals:

x21+x1+x3

EASY
IMPORTANT

limx0x32x>0=

MEDIUM
IMPORTANT

If Ai=x-aix-ai,i=1,2,3,.,n   and a1<a2<a3<..<an, limxamA1A2.An,1mn

MEDIUM
IMPORTANT

(b) Plot the graph of the function fx=Limt0 2xπtan-1xt2

MEDIUM
IMPORTANT

limx11-x+x-1+1-x where x denotes the greatest integer less than or equal to x

HARD
IMPORTANT

Let f(x)=x1x for x(0)R, where for each tR, t denotes the greatest integer less than or equal to t. Then,