Methods of Evaluation of Limits

IMPORTANT

Methods of Evaluation of Limits: Overview

This topic covers concepts, such as, Finding Limits Using Factorisation, Finding Limits Using Rationalisation, Geometrical Problems Based on Limits & Limit Inequality Theorem etc.

Important Questions on Methods of Evaluation of Limits

HARD
IMPORTANT

Let a1>a2>a3>>an>1; p1>p2>p3>>pn>0; such that p1+p2+p3++pn=1. Also Fx=p1a1x+p2a2x++pnanx1/x, then limxFx equals

MEDIUM
IMPORTANT

If limx01-cosx.cos2x.cos3xcosnxx2 has the value equal to 253, find the value of n is equal to (where nN)

HARD
IMPORTANT

The value of limx0x6000-sinx6000x2sinx6000 is

MEDIUM
IMPORTANT

The value of limx01+sinx-cosx+ln1-xx·tan2x is

MEDIUM
IMPORTANT

limx0x+ln1+x2-xx3=

HARD
IMPORTANT

limx08x81-cosx22-cosx24+cosx22cosx24

HARD
IMPORTANT

Let n be an odd integer, if   sinnθ = r=0 n b r sin r θ , for every value of   θ , then

MEDIUM
IMPORTANT

If limx0eax-cos(bx)-cxe-cx21-cos(2x)=17, then 5a2+b2 is equal to

MEDIUM
IMPORTANT

Let a1,a2,a3,....,an be n positive consecutive terms of an arithmetic progression. If d>0 is its common difference, then limndn1a1+a2+1a2+a3++1an-1+an is

MEDIUM
IMPORTANT

limn212-213212-215....212-212n+1 is equal to

EASY
IMPORTANT

limx-8x3+2x+8=

HARD
IMPORTANT

The value of limx0ex-x-1x-sinxln1+xx6 is equal to

EASY
IMPORTANT

Find the value of limx0cosxcot2x.

EASY
IMPORTANT

limx11-xtanπx2 is equal to

EASY
IMPORTANT

limx0sin2x2-1+cosx equals

EASY
IMPORTANT

limx-2x9+512x5+32=

HARD
IMPORTANT

The value of the limit limx0+sinxxex+x1x is

HARD
IMPORTANT

Evaluate the limit: limx0+sinxxex+x1x.

EASY
IMPORTANT

Find the value of the limit limx0sin2π2-axsec2π2-ax

EASY
IMPORTANT

Evaluate limx1101-x10-31-x3