Definition of Circle

Author:O P Malhotra, S K Gupta & Anubhuti Gangal
9th ICSE
IMPORTANT

Important Questions on Definition of Circle

EASY
IMPORTANT

A chord distant 2 cm from the centre of a circle is 18 cm long. If the length of a chord of the same circle which is 6 cm distant from the centre is k cm then find the value of k.

EASY
IMPORTANT

The radius of a circle is 2.5 cmAB and CF are two parallel chords  3.9 cm apart. If, AB=1.4 cm, find CF.

MEDIUM
IMPORTANT

In Figure OMNP is a square. A circle drawn with centre O cuts the square in X and Y. Prove that: OXMOYP, Hence prove that NX=NY.

Question Image

MEDIUM
IMPORTANT

In the given Figure OD is perpendicular to the chord AB of a circle whose centre is O. Prove that CA=2OD.

Question Image

EASY
IMPORTANT

Find the centre of a given circle.

Question Image

MEDIUM
IMPORTANT

In the given Figure, CD is the perpendicular bisector of the chord AB.If, AB=2 cm and CD=4 cm, if the radius of the circle is k cm then find the value of k in decimal.

Question Image

 

MEDIUM
IMPORTANT

In the figure, AB=8 cm, CM=1 cmCM is the perpendicular bisector of AB, radius OA=x cm. Find x.

Question Image 

MEDIUM
IMPORTANT

The length of the common chord of two equal intersecting circles is 10 cm and the distance between the two centres is 6 cm, if the radius of each circle is k.83 cm then find the value of k.

Question Image

MEDIUM
IMPORTANT

In figure, circles are concentric with Centre O. If the length of AC is k cm, then find the value of k in decimal. 

.Question Image

 

MEDIUM
IMPORTANT

In a circle of radius  5 cmAB and CD are two parallel chords of length 8 cm and 6 cm respectively.If the distance between the chords, when they are on the opposite side of the centre is k cm, find the value of k

MEDIUM
IMPORTANT

In a circle of radius 5 cmAB and CD are two parallel chords of length 8 cm and 6 cm respectively.

If the distance between the chords is k cm then find the value of k, if they are on the same side of the centre.

EASY
IMPORTANT

In figure, CD is diameter which meets the chord AB in E, such that AE=BE=4 cm, If CE is 3 cm, then the radius of the circle is r cm. Find the value of r correct to one decimal place.

Question Image  

EASY
IMPORTANT

In the figure, the radius of the given circle with, centre C, is 6 cm. If the chord AB is 3 cm away from the centre and its length is k cm, then find the value of k, correct to one decimal place. [Take 3=1.7]

Question Image 

EASY
IMPORTANT

If the length of a chord which is at a distance of 12 cm from the centre of a circle of radius 13 cm is k cm, then find the value of k.