Special Points in a Triangle

IMPORTANT

Special Points in a Triangle: Overview

This topic covers concepts, such as, Centroid of a Triangle, Coordinates of Centroid in Triangle,Relation in Centroid, Circumcentre and Orthocentre and Orthocentre of a Triangle etc.

Important Questions on Special Points in a Triangle

MEDIUM
IMPORTANT

The points A(1, 4), B(5, 2) are the vertices of a triangle of which O(0,3) is centroid, then the third vertex C is_____.

HARD
IMPORTANT

Two vertices of a triangle are  (5, 1) and (2, 3). If orthocentre of the triangle is the origin, find the coordinates of the third vertex.

MEDIUM
IMPORTANT

Let (α,β) be the centroid of the triangle formed by the lines 15x-y=82, 6x-5y=-4 and 9x+4y=17. Then α+2β and 2α-β are the roots of the equation

MEDIUM
IMPORTANT

If α, β is the orthocenter of the triangle ABC with vertices A3, 7, B1, 2 and C4, 5, then 9α-6β+60 is equal to

EASY
IMPORTANT

Let C(α, β) be the circumcentre of the triangle formed by the lines 4x+3y=694y-3x=17, and x+7y=61. Then (α-β)2+α+β is equal to

HARD
IMPORTANT

The orthocentre of the triangle having vertices A1,2, B3,-4 and C0,6 is

HARD
IMPORTANT

The equations of perpendicular bisectors of sides AB and AC of a triangle ABC are x+y+1=0 and x-y+1=0 respectively. If circumradius of ABC is 2 units and locus of vertex A is x2+y2+gx+c=0, then g2+c2 is equal to

MEDIUM
IMPORTANT

Let in triangle ABCA=45°, B=60°, C=75° then the ratio in which the orthocentre divides the altitude AD is

MEDIUM
IMPORTANT

The circumcentre of the triangle formed by the points acosα,asinα, acosβ,asinβ & acosγ,asinγ is 

MEDIUM
IMPORTANT

A triangle ABC is formed by the lines x+y+2=0, x-2y+5=0 & 7x+y-10=0P is a point inside the triangle ABC such that area of the triangle PAB, PBC & PCA are equal. If the co-ordinates of the point P are a,b and the area of the triangle ABC is δ, then find a+b+δ.

MEDIUM
IMPORTANT

Find the orthocentre of triangle with vertices 3,4,-4,-3 and 5cosθ, -5sinθ.

EASY
IMPORTANT

The centroid of the triangle formed by the lines x-3y+3=0,x+3y+3=0,x+y-1=0 is

HARD
IMPORTANT

The base of a triangle is the axis of x and its other two sides are given by the equation y=1+ααx+1+α and y=1+ββx+1+β. Locus of its orthocenter is

MEDIUM
IMPORTANT

Suppose ABC is an isosceles triangle with C=90°,A=2,3 and B=4,5. Then the centroid of the triangle is

HARD
IMPORTANT

Let the equation x3+y3+3xy=1 represents the coordinates of one vertex A and the equation of side BC of the triangle ABC. If B is the orthocentre of the triangle ABC, then the equation of side AB is y=mx+c. Then absolute value ' of 4-m-c is

HARD
IMPORTANT

A right triangle has sides 'a' and 'b' where a>b. If the right angle is bisected then find the distance between orthocentres of the smaller triangles using coordinate geometry.

HARD
IMPORTANT

Number of right isosceles triangles that can be formed with points lying on the curve 8x3+y3+6xy=1 is

EASY
IMPORTANT

The centroid of a triangle whose vertices are -8,4, P,6 and -3,9 is -173,193, then find the value of P.

EASY
IMPORTANT

Centroid of a triangle divides its median in the ratio

MEDIUM
IMPORTANT

If the orthocentre and circumcentre of a triangle are 0,0 & 3,6 respectively then the centroid of the triangle is