Altitude of a Triangle

IMPORTANT

Altitude of a Triangle: Overview

This topic covers concepts, such as, Altitude of Triangles, Basic Properties of Altitudes of Triangles & Altitudes and Medians in Equilateral Triangles etc.

Important Questions on Altitude of a Triangle

MEDIUM
IMPORTANT

A triangle and a parallelogram are constructed on the same base such that their areas are equal. If the altitude of the parallelogram is 100 m, then the altitude of the triangle is?

MEDIUM
IMPORTANT

In ABC, A<B, the altitude to the base divides vertex angle C into two parts C1 and C2 adjacent to BC, then which one of the relation can be obtained?

EASY
IMPORTANT

Let ABC be an equilateral triangle and AX, BYCZ be the altitudes. Then the right statement out of the four given responses is:

EASY
IMPORTANT

In triangle PQR,PS is the altitude to QR. Which of the following must be true?

EASY
IMPORTANT

The number of altitudes of a triangle is

EASY
IMPORTANT

If the length of the sides of a triangle are 26 cm, 28 cm and 30 cm. Then find the length of the altitude drawn on side having length 30 cm.

EASY
IMPORTANT

In a right angle triangle PQR right-angled at Q. If the length of PQ and QR are respectively 40 cm and 9 cm, then find the length of altitude QT drawn on PR?

EASY
IMPORTANT

If the length of the two altitudes of a PQR are 9cm and 12cm, then what would be the possible length of the unknown altitude?

EASY
IMPORTANT

In ABC, AB=AC and AL is perpendicular to BC at L. In DEF, DE=DF and DM is perpendicular to EF at M. If (area of ABC):(area of DEF)=9.25, then DM+ALDM-AL is equal to:

EASY
IMPORTANT

Name the orthocentre of PQR.

Question Image

EASY
IMPORTANT

Identify the type of segment required in the below triangle:

Question Image

AD=

EASY
IMPORTANT

Question Image

ABC is a right angled triangle. If CD=k cm then find k.

HARD
IMPORTANT

If the altitude to side AC of triangle with side AB = 20 cm, AC = 20 cm, BC = 30 cm is 7.5k cm then find k.

EASY
IMPORTANT

Given: BX is the altitude, BAX=40°. If 1=k° then find k.

Question Image

EASY
IMPORTANT

Given: AX is the altitude, CABB, C=50°. If B is k° then find k

Question Image

EASY
IMPORTANT

The corresponding sides of two similar triangle are in the ratio 1:5, then the ratio of their altitude will be:  

EASY
IMPORTANT

BL and  CM are medians of ΔABC right-angled at A and BC=5 cm.If BL=352 cm. Find the length of CM.

EASY
IMPORTANT

Where does the orthocentre lie in the case of a right angled triangle?

EASY
IMPORTANT

Where does the orthocentre lie in the case of an obtuse-angled triangle?

EASY
IMPORTANT

Where does the orthocentre lie in the case of an acute-angled triangle?