Corresponding Parts of Congruent Triangles (CPCT)

Author:B Nirmala Shastry
9th ICSE
IMPORTANT

Important Questions on Corresponding Parts of Congruent Triangles (CPCT)

MEDIUM
IMPORTANT

ABCD is a paralleogram. M is the mid-point of BC. Show that, DC=CP

MEDIUM
IMPORTANT

PQR is an equilateral triangle. QM and RN are medians. Prove that, QM=RN

MEDIUM
IMPORTANT

Prove that if altitudes from two vertices of a triangle to the opposite sides are equal, then the triangle is isosceles.

MEDIUM
IMPORTANT

ABCD is a quadrilateral in which AP and CQ are perpendicular to diagonal BD and AP=CQ. Prove that, BD bisects AC

HARD
IMPORTANT

In ABCAB=AC and AP=AQ. Prove that, CP=BQ.

HARD
IMPORTANT

In the given figure, AD=BC,AC=BD. Prove that, ADB=ACB

HARD
IMPORTANT

Prove that, ABDCBD. Find the values of x and y, if ABD=35°CBD=3x+5°ADB=y-3°CDB=25°

HARD
IMPORTANT

In AOB and CODB=C and O is the mid-point of BC. Find the values of x and y if AB=3x units, CD=y+2 units, AO=x+2 units, DO=y units.

HARD
IMPORTANT

PS bisects QPR and PSQR. If PQ=2x units, PR=3y+8 units, undefined units and SR=2y units. Find the value of x and y

HARD
IMPORTANT

In the given triangles, AC=DF, BD=CE and ACB=FDE. Prove that, A=F

HARD
IMPORTANT

In the quadrilateral ABCDAD=CD and A=90°=C. Prove that, AB=BC

HARD
IMPORTANT

In ABCAB=AC, and CP and BQ are altitudes. Prove that, CP=BQ

HARD
IMPORTANT

In PQRPQ=PRQN=RM. Prove that, QPM=RPN