Basics of Definite Integral

IMPORTANT

Basics of Definite Integral: Overview

This topic covers concepts such as Definite Integral, Geometrical Interpretation of Definite Integrals, Finding Definite Integral of a Function, Basics of Definite Integrals, Proper Definite Integrals, Improper Definite Integrals, etc.

Important Questions on Basics of Definite Integral

HARD
IMPORTANT

If y=x1xlntdt, then the value of dydx at x=e is

HARD
IMPORTANT

I=0πx2 sin2xsinπ2cosx2x-π dx

HARD
IMPORTANT

If π4π3sin3θ-cos3θ-cos2θsinθ+cosθ+cos2θ2007sinθ2009cosθ2009dθ=a+bd-1+cdd, where a, b, c  and d are all positive integers. Then the value of (a+b+c+d) is

MEDIUM
IMPORTANT

The value of : 024x2dx would be:

MEDIUM
IMPORTANT

The value of 1e37πsin(πnx)xdx is

EASY
IMPORTANT

The value of  1e37πsinπlnxxdx  is:

HARD
IMPORTANT

Let f be a non-negative function defined on the interval [ 0,1 ]. If  0x1(f'(t))2dt=0xf(t)dt,0x1,  and   f(0)=0,  then:

EASY
IMPORTANT

The value of the integral 0 1 1x 1+x dx is

MEDIUM
IMPORTANT

The value of the integral 0 1 1x 1+x dx is

MEDIUM
IMPORTANT

The value of the integral e1e2logexxdx is

EASY
IMPORTANT

Let   f(x)=x[x],  for every real number x, where [x] is the integral part of x. Then 1 1 f(x) dx is

EASY
IMPORTANT

Let  fx=xx,  for every real number x, where [x] is the integral part of x. Then  11f(x)dx is:

MEDIUM
IMPORTANT

If fx=Asinπx2+B, f'12=2 and01fxdx=2Aπ, then constants A and B are respectively 

MEDIUM
IMPORTANT

fx=Asinπx2+B, f'12=2 and01fxdx=2Aπ, then constants A and B are

HARD
IMPORTANT

The value of 0π/4sinx+cosx9+16sin2xdx is

 

HARD
IMPORTANT

The set of real numbers a>0 for which the inequality
1a1a32x+1-1xdx<4 is valid, lie in the interval

EASY
IMPORTANT

If abfxdx=a+2b, then abfx+5dx=

MEDIUM
IMPORTANT

Let p be a polynomial with real coefficients such that 01ptdt=0. Which of the following statements is always true?

HARD
IMPORTANT

The value of the integral π2πsin3x2sinx2dx is

HARD
IMPORTANT

The integral 012ex2-x2(1-x)32(1+x)12dx is equal to