Basics of Definite Integrals

IMPORTANT

Basics of Definite Integrals: Overview

This topic covers concepts, such as, Definite Integral, Basics of Definite Integrals, Average Value of a Function & Finding Definite Integral Using Area Formulae etc.

Important Questions on Basics of Definite Integrals

HARD
IMPORTANT

If fx is a function such that fx. f-x=9 x -51,51, then -5151dx3+fx has the value equal to

HARD
IMPORTANT

If y=x1xlntdt, then the value of dydx at x=e is

HARD
IMPORTANT

If ϕ x=cosx-0xx-t ϕ tdt. Then find the value of ϕ''x+ϕx.

HARD
IMPORTANT

The value of 0dxx2+2x cosθ+1 is 

HARD
IMPORTANT

I=0πx2 sin2xsinπ2cosx2x-π dx

MEDIUM
IMPORTANT

Find I where I=0p+qπcosxdx where qN and -π2<p<π2.

HARD
IMPORTANT

If π4π3sin3θ-cos3θ-cos2θsinθ+cosθ+cos2θ2007sinθ2009cosθ2009dθ=a+bd-1+cdd, where a, b, c  and d are all positive integers. Then the value of (a+b+c+d) is

MEDIUM
IMPORTANT

The value of : 024x2dx would be:

MEDIUM
IMPORTANT

The value of 1e37πsin(πnx)xdx is

EASY
IMPORTANT

The value of  1e37πsinπlnxxdx  is:

HARD
IMPORTANT

Let f be a non-negative function defined on the interval [ 0,1 ]. If  0x1(f'(t))2dt=0xf(t)dt,0x1,  and   f(0)=0,  then:

EASY
IMPORTANT

The value of the integral 0 1 1x 1+x dx is

MEDIUM
IMPORTANT

The value of the integral 0 1 1x 1+x dx is

MEDIUM
IMPORTANT

The value of the integral e1e2logexxdx is

EASY
IMPORTANT

Let   f(x)=x[x],  for every real number x, where [x] is the integral part of x. Then 1 1 f(x) dx is

EASY
IMPORTANT

Let  fx=xx,  for every real number x, where [x] is the integral part of x. Then  11f(x)dx is:

MEDIUM
IMPORTANT

If fx=Asinπx2+B, f'12=2 and01fxdx=2Aπ, then constants A and B are respectively 

MEDIUM
IMPORTANT

fx=Asinπx2+B, f'12=2 and01fxdx=2Aπ, then constants A and B are

EASY
IMPORTANT

Let f be a positive function.

Let I1=1kkxfx1xdx, I2=1kkfx1xdx, where 2k1>0. Then I1I2 is

MEDIUM
IMPORTANT

Let f be a positive function.

Let   I 1 = 1k k xf[x(1x)] dx, I 2 = 1k k f[x(1x)] dx,  where   2k1>0.  then   I 1 I 2  is