Definite Integral as Limit of a Sum

IMPORTANT

Definite Integral as Limit of a Sum: Overview

This topic covers concepts such as definite integral and the basics of definite integrals.

Important Questions on Definite Integral as Limit of a Sum

HARD
IMPORTANT

The value of abfxdx=balimn1n[fa+fa+h+...+fa+n1h], where h=banf(x)=x2+x+2; a=0, b=2 as limits of sum would be

EASY
IMPORTANT

 20{x3+3x2+3x+3+(x+1)cos(x+1)}dx  is equal to:

MEDIUM
IMPORTANT

The value of the integral 0 1 1x 1+x dx is

MEDIUM
IMPORTANT

If fx=Asinπx2+B, f'12=2 and01fxdx=2Aπ, then constants A and B are respectively 

MEDIUM
IMPORTANT

fx=Asinπx2+B, f'12=2 and01fxdx=2Aπ, then constants A and B are

HARD
IMPORTANT

The value of 0π/4sinx+cosx9+16sin2xdx is

 

HARD
IMPORTANT

The value of limn1n+1+1n+2+...+16n is

HARD
IMPORTANT

limn1n+1+1n+2+...+16n  is equal to

HARD
IMPORTANT

Evaluate the following integral as a limit of sum :

13x3dx

HARD
IMPORTANT

Evaluate the following integral as a limit of sum :

03(ex+6x2)dx

HARD
IMPORTANT

Evaluate the following integral as a limit of sum :

013xdx

HARD
IMPORTANT

Evaluate the following integral as a limit of sum :

13axdx

HARD
IMPORTANT

Evaluate the following integral as a limit of sum (up to two decimal places):

04(x-x2)dx

HARD
IMPORTANT

Evaluate the following integral as a limit of sum :

02(3x2-1)dx

HARD
IMPORTANT

Evaluate the following integral as a limit of sum :

35(2-x)dx

HARD
IMPORTANT

Evaluate the following integral as limit of a sum :

02(2x+1)dx

HARD
IMPORTANT

Suppose the limit L=limnn0111+x2ndx exists and is larger than 12. Then,

MEDIUM
IMPORTANT

limn1+24+34+...............+n4n5=

EASY
IMPORTANT

limn1+22+33++nnn52=

MEDIUM
IMPORTANT

Evaluate the following definite integral as a limit of sums

02(x+4)dx