Newton Leibnitz's Theorem

IMPORTANT

Newton Leibnitz's Theorem: Overview

This topic covers concepts, such as, Special Case of Derivative of a Definite Integral, Newton Leibnitz Theorem for Definite Integral & Functional Equation Involving Definite Integral etc.

Important Questions on Newton Leibnitz's Theorem

HARD
IMPORTANT

Let fx=1x2-t2dt. Then the real roots of the equation x2-f'x=0 are

HARD
IMPORTANT

If y=1a0xft·sinax-tdt, then find fx

HARD
IMPORTANT

If ϕ x=cosx-0xx-t ϕ tdt. Then find the value of ϕ''x+ϕx.

EASY
IMPORTANT

fx=sinx+0xf't2sint-sin2tdt, then fx is

HARD
IMPORTANT

Let fx=-xxtsinat+bt+cdt, where a,b,c are non-zero real numbers, then limx0fxx is

EASY
IMPORTANT

The value of  limxx3-1x1xln1+t21+etdt is

HARD
IMPORTANT

Let fx=2xdt1+t4 and g be the inverse of f. Then the value of g'0 is

HARD
IMPORTANT

Let f be a real-valued function defined on the interval (–1, 1) such that   e x f(x)=2+ 0 x t 4 +1 dt,  for all   x(1,1),  and let   f 1  be the inverse function of f. Then   f - 1 2 is equal to:

 

MEDIUM
IMPORTANT

The value of limx01x30xtn(1+t)t4+4dt is

MEDIUM
IMPORTANT

The value of  limx0 1x30xt ln1+tt4+4dt  is:

EASY
IMPORTANT

If fx is differentiable and 0t2xfxdx=25t5, then  f425 equals to

MEDIUM
IMPORTANT

If f(x) is differentiable and 0t2xf(x)dx=25t5, then f425 equals:

MEDIUM
IMPORTANT

Let fx=1x2t2dt.  Then the real roots of the equation x2-f'x=0 are

HARD
IMPORTANT

Let gx=0xftdt, where f is such that 12ft1, for t0,1 and 0ft12, for t1,2. Then g2 satisfies the inequality

HARD
IMPORTANT

Let g(x)=0xf(t)dt, where  f is such that  12f(t)1 for t[0,1] and 0f(t)12 for t[1,2]. Then, g(2) satisfies the inequality

HARD
IMPORTANT

If  sinx1t2f(t)dt=1sinx, then f(13)  is:

HARD
IMPORTANT

Let g(x)=0|x|3/4t2/3sin1tdt for all real x, then limx0g(x)x is equal to,

HARD
IMPORTANT

If fx=eexlogexlogetdt, then the value of 3f'(3)e is

MEDIUM
IMPORTANT

Let Fx=0xftdt, where fx=2+sinx-cosx. If Fx-Fykx-y for all x and y in R, then a possible value of k is

HARD
IMPORTANT

If 0fxt2dt=xcosπx, then f'9 is