Integration Using Trigonometric Identities

IMPORTANT

Integration Using Trigonometric Identities: Overview

This topic covers concepts, such as, Integration of Trigonometric Functions, Finding Integration of Trigonometric Functions Using Trigonometric Identities, Finding Integration of Type (Sin^m x).(Cos^n x )dx & Algebraic and Trigonometric Twins etc.

Important Questions on Integration Using Trigonometric Identities

EASY
IMPORTANT

The value of cos2xcos4x dx is

EASY
IMPORTANT

Evaluate : tanθ dθ [Take tanθ=t]

HARD
IMPORTANT

Value of   (cos2x) 1 2 sinx dx is equal to

HARD
IMPORTANT

(cos2x) 1 2 sinx dx is equal to

MEDIUM
IMPORTANT

dxsinx-asin(x-b) is equal to

MEDIUM
IMPORTANT

dxcosx+3sinx  is equal to

EASY
IMPORTANT

If cos4x+1cotx-tanxdx=kcos4x+c , then value k is equal to

HARD
IMPORTANT

sin 2x sin 5x sin 3x dx is equal to

EASY
IMPORTANT

4sin x cosx2cos3x2dx is equal to

HARD
IMPORTANT

The value of 2sin x dxsinxπ4 is equal to

HARD
IMPORTANT

The value of 4sinxcosx2cos3x2dx is equal to

HARD
IMPORTANT

Integrate the following w.r.t x:

12+cosx-sinx

HARD
IMPORTANT

If 2sinx+3cosx3sinx+4cosxdx=Alog|3sinx+4cosx|+Bx+c, then A and B are

MEDIUM
IMPORTANT

If 1+cos(4x)cot(x)-tan(x)dx=kcos4x+c, then

MEDIUM
IMPORTANT

Integrate the following function with respect to x
sin3xsin2x

HARD
IMPORTANT

If 2cosx+3sinx3cosx+4sinxdx=Ax+Bln3cosx+4sinx+C, then A+B is equal to

HARD
IMPORTANT

Evaluate the following:

13+2sin2x+4cos2xdx