Integration Using Trigonometric Identities

IMPORTANT

Integration Using Trigonometric Identities: Overview

This topic covers concepts such as Integration of Trigonometric Functions, Finding Integration of Trigonometric Functions Using Trigonometric Identities, and Finding Integration of Type dx/(A+Bsin^2 x) or dx/(A+Bcos^2 x).

Important Questions on Integration Using Trigonometric Identities

EASY
IMPORTANT

The value of cos2xcos4x dx is

EASY
IMPORTANT

Evaluate : tanθ dθ [Take tanθ=t]

HARD
IMPORTANT

Value of   (cos2x) 1 2 sinx dx is equal to

HARD
IMPORTANT

The value of 4sinxcosx2cos3x2dx is equal to

HARD
IMPORTANT

If 2sinx+3cosx3sinx+4cosxdx=Alog|3sinx+4cosx|+Bx+c, then A and B are

MEDIUM
IMPORTANT

If 1+cos(4x)cot(x)-tan(x)dx=kcos4x+c, then

HARD
IMPORTANT

If 2cosx+3sinx3cosx+4sinxdx=Ax+Bln3cosx+4sinx+C, then A+B is equal to

HARD
IMPORTANT

Evaluate the integral4cosx+π6cos2x.cos5π6+xdx (where c is constant of integration)

MEDIUM
IMPORTANT

Integral: sinx-cosxsin2xdx equals: (where c is constant of integration)

HARD
IMPORTANT

Consider the indefinite integral cos4x+1cotxtanxdx=fx+c then fundamental period of f( x ) is: (where c is constant of integration)

MEDIUM
IMPORTANT

Indefinite integralsin3xdxcos4x+3cos2x+1tan-1secx+cosx is equal to (where c is constant of integration)

MEDIUM
IMPORTANT

Integration of secxsecx+tanxdx equals: (where C is constant of integration)

MEDIUM
IMPORTANT

The value of11+sinxdx=_____

MEDIUM
IMPORTANT

Find the value of P, ifcotxsinxcosxdx=Pcotx+Q.

HARD
IMPORTANT

Find the ordered triplet (A, B, λ), If 2cosx-sinx+λcosx+sinx-2dx=Alogecosx+sinx-2+Bx+C.