Integration by Parts

IMPORTANT

Integration by Parts: Overview

Integration by parts is one of the methods to find integration. In this topic, we will learn to integrate an expression by parts by using the formulas used for it through examples and exercises.

Important Questions on Integration by Parts

MEDIUM
IMPORTANT

Given, ex(tanx+1)secxdx=exf(x)+C

A satisfying value of   f( x )  would be:

MEDIUM
IMPORTANT

What would be the value of  x sin1x1x2dx

 

EASY
IMPORTANT

What would be the value of  xlog2xdx

HARD
IMPORTANT

Integrate   x 3 +3x+2 ( x 2 +1) 2 (x+1) dx

HARD
IMPORTANT

Find the indefinite integral

  cos2θlog( cosθ+sinθ cosθsinθ ) dθ

HARD
IMPORTANT

Evaluate the integral (xsinx)dx.

MEDIUM
IMPORTANT

Integrate the following function w.r. t. x:

exxx·(logx)2+2·logx

MEDIUM
IMPORTANT

If integration of x logx with respect to x is x2mlogx-x2n+C, then the value of m+n is

MEDIUM
IMPORTANT

If integration of 25xe-5x respect to x is Axe-5x+Be-5x+C, then the value of A+B is 

MEDIUM
IMPORTANT

Evaluate xexdx.

MEDIUM
IMPORTANT

Find: exsin x dx

HARD
IMPORTANT

Find eax·sin(bx+c)dx

HARD
IMPORTANT

Find x sec2x dx.

MEDIUM
IMPORTANT

Evaluate xlogxdx

HARD
IMPORTANT

Evaluate 02πex·sinπ4+x2dx.

HARD
IMPORTANT

Find x·logxdx

MEDIUM
IMPORTANT

Integrate with respect to x:

sin-12x1+x2

MEDIUM
IMPORTANT

Integrate with respect to x:

x1+sinx

HARD
IMPORTANT

Integrate with respect to x:

sin-1x2

MEDIUM
IMPORTANT

Integrate with respect to x:

cos-11x