Scalar Triple Product

Author:Amit M Agarwal
JEE Advanced
IMPORTANT

Important Questions on Scalar Triple Product

HARD
IMPORTANT

If the vectors pi^+j^+k^, i^+qj^+k^ and i^+j^+rk^ (where pqr1)) are coplanar, then the value of pqr-(p+q+r) is

HARD
IMPORTANT

If V=2i+j-k and W=i+3k. If U is a unit vector, then the maximum value of the scalar triple product U V W is

HARD
IMPORTANT

If a,b and c are non-coplanar vectors and d=λa+μb+vc,then λ is equal to

MEDIUM
IMPORTANT

If a, b and c are three non-coplanar vectors, then a·b×cc×a·b+b·a×cc·a×b is equal to

HARD
IMPORTANT

If a, b and c are any three vectors and their inverse are a1, b1, c1 and a b c0, then a1 b1 c1 will be

MEDIUM
IMPORTANT

If u, v and w are three non-coplanar vectors, then u+vw·uv×vw is equal to

HARD
IMPORTANT

Let a=i^+j^+k^, b=i^-j^+k^  and  c=i^-j^-k^  be three vectors. A vector V in the plane of a and b, whose projection on  c is 13, is given by

MEDIUM
IMPORTANT

The number of distinct real values of λ, for which the vectors -λ2i^+j^+k^, i^-λ2k^+j^  and i^+j^-λ2k^ are coplanar, is

HARD
IMPORTANT

The vector a=αi^+2j^+βk^ lies in the plane of the vectors b=i^+j^ and c=j^+k^ and bisects the angle between b and c. Then, which one of the following given possible values of α and β?

MEDIUM
IMPORTANT

If a, b, c are non-coplanar vectors and λ is a real number, then λa+b  λ2b  λc=ab+cb for

HARD
IMPORTANT

If u, v and w are non-coplanar vectors and p and q are real numbers, then the equality 3u pv pwpv w qu2w qv qu=0 holds for

MEDIUM
IMPORTANT

Let u=i^+j^, v=i^-j^ and w=i^+2j^+3k^ If n^ is a unit vector such that u·n^=0 andv·n^=0, then w·n^ is equal to

MEDIUM
IMPORTANT

Let a=i-k, b=xi+j+1-xk and c=yi+xj+1+x-yk.Then,  a  b  c depends on

HARD
IMPORTANT

Let a=i^+j^+k^, b=i^-j^+2k^ & c=xi^+x-2j^-k^. If the vector c lies in the plane of a and b, then x is equal to

HARD
IMPORTANT

The value of a, so that the volume of parallelepiped formed by i+aj+k, j+ak and ai+k become minimum, is

HARD
IMPORTANT

The unit vector which is orthogonal to the vector 3i^+2j^+6k^ and is coplanar with the vectors 2i^+j^+k^ and i^-j^+k^, is

MEDIUM
IMPORTANT

Let  v=2i^+j^+k^ and w=i^+3k^. If  u is a unit vector, then the maximum value of the scalar triple product u v w is

HARD
IMPORTANT

If αa×b+βb×c+γ c×a=0, then

HARD
IMPORTANT

Let b, a and c be three non-coplanar vectors and d be a non-zero vector, which is perpendicular to a+b+c. Now, if d=sinxa×b+cosyb×c+2c×a,then the minimum value of x2+y2 is equal to

HARD
IMPORTANT

If a,b and c are any three vectors forming a linearly independent system, then acosθ+bsinθ+ccos2θ     acos2π3+θ+bsin2π3+θ+ccos22π3+θ     acosθ-2π3+bsinθ-2π3+ccos2θ-2π3   θR equals