Maximum and Minimum Values of Trigonometric Functions

Author:Amit M Agarwal
JEE Main
IMPORTANT

Important Questions on Maximum and Minimum Values of Trigonometric Functions

MEDIUM
IMPORTANT

The value of a for which the equation; 4cosec2(π(a+x))+a2-4a=0 has a real solution is:

MEDIUM
IMPORTANT

The maximum value of the expression, sin2x+2a2-2a2-1-cos2x, where a and x are real numbers is

HARD
IMPORTANT

Determine all the values of x in the interval x[0, 2π] which satisfy the inequality 2cosx1+sin2x-1-sin2x2.

HARD
IMPORTANT

Find the set of values of α for which the point sinα, cosα does not lie outside the curve 2y2+x-2=0 in the interval π2, 3π2.

HARD
IMPORTANT

Four real constants abAB are given and fθ=1-acosθ-bsinθ-Acos2θ-Bsin2θ.  Prove that if fθ0,θR then a2+b22 and A2+B21.

HARD
IMPORTANT

If the quadratic equation 4sec2αx2+2x+β2-β+12=0 have real roots, then find all the possible values of cosα+cos-1β.

HARD
IMPORTANT

If abc and k are constant quantities and α, β, γ are variable subject to the relation atanα+btanβ+ctanγ=k, find the minimum value of tan2α+tan2β+tan2γ.

HARD
IMPORTANT

If a and b are positive quantities and ab, find the minimum positive values of asecθ-btanθ.

HARD
IMPORTANT

Find all the solutions of the equation sinx-π4-cosx+3π4=1which satisfy, 2cos7xcos3+sin3>2cos2x,x0,π.