Trigonometric Ratios of Some Specific Angles

IMPORTANT

Trigonometric Ratios of Some Specific Angles: Overview

This topic covers concepts, such as, Trigonometric Ratios of 90 Degree, Trigonometric Ratios of 45 Degree,Trigonometric Ratios of 0 Degree and Trigonometric Ratios of 30 Degree etc.

Important Questions on Trigonometric Ratios of Some Specific Angles

MEDIUM
IMPORTANT

If 2cosθ-sinθ=12 and 0°<θ<90°, then the value of 2sinθ+cosθ is:

MEDIUM
IMPORTANT

If tanπ2-θ2=3, then value of cosθ is:

EASY
IMPORTANT

If sinθ+cosecθ=2, then what is the value of sin2θ+cosec5θ when 0°θ90°?

EASY
IMPORTANT

If tanθ-cotθ=0, then the value of sinθ+cosθ ?

EASY
IMPORTANT

If sin45°-xcos60°=0, then what is the value of x?

MEDIUM
IMPORTANT

If sin θ=32, show that 4cos3θ-3cosθ=-1

HARD
IMPORTANT

In an acute angled triangle ABC, if sin(A+B-C)=12 and cosB+C-A=12, then find A, B and C

EASY
IMPORTANT

If sinθ=35 and cosθ=45, then find the value of sin2θ+cos2θ.

MEDIUM
IMPORTANT

If 4cot245°-sec260°+sin260°+p=34, then find the value of p

MEDIUM
IMPORTANT

A tower and a building are standing vertically on a level ground. The angles of elevation of the top of the tower from a point on the same ground and from the top of the building are found to be 30° and 60° respectively. If the distance of the point from the foot of the tower is 303 m and height of the building is 10 m, then find the distance between the foot of the tower and building and also the distance between their tops.

Question Image

HARD
IMPORTANT

In a rectangle ABCD, the length BC is twice the width AB. Pick a point P on side BC such that the lengths of AP and BC are equal. The measure of angleCPD is:

MEDIUM
IMPORTANT

What is the value of sin 30°?

EASY
IMPORTANT

Find the value of 5sin30°+3tan45°

EASY
IMPORTANT

Given that tanθ1+θ2=tanθ1+tanθ21-tanθ1tanθ2.

Find θ1+θ2 when tanθ1=12, tanθ2=13

EASY
IMPORTANT

tanθ=cotθ for all values of θ.

MEDIUM
IMPORTANT

The angle of elevation of the top of a rock from the top and foot of a 100 m high tower are 30° and 45° respectively. Find the height of the rock.

MEDIUM
IMPORTANT

If tan A+sin2 45°-cos2 30°-cosec2 45°sec2 60°= 4, then find tan A.

MEDIUM
IMPORTANT

Prove that 6.(2+3)[cosec60°2-cos45°]=-1.