Trigonometric Ratios

IMPORTANT

Trigonometric Ratios: Overview

This topic covers concepts, such as, Trigonometric Ratios Independent of Size of Triangle, Trigonometry, Increasing and Decreasing Behaviour of Sine and Cosine & Range of Trigonometric Ratios etc.

Important Questions on Trigonometric Ratios

EASY
IMPORTANT

Explain why sin-1θ1sinθ, but sin2θ=sinθ2.

EASY
IMPORTANT

For the triangle ABC shown below, sinB=k. The size of the triangle ABC is increased in such a way that area of the new triangle is double, keeping the angles equal. This produced PQR. Then, the value of sinQ will be

Question Image 

EASY
IMPORTANT

Trigonometric ratios are dependent on the size of the triangle provided the angle remains the same.

EASY
IMPORTANT

Prove that Trigonometric ratios are independent of the size of the triangle provided the angle remains the same.

EASY
IMPORTANT

cot A=cos A× sin A.

EASY
IMPORTANT

If cot A+1cot A=1, then the value of cot2A+1cot2A is

EASY
IMPORTANT

if 4 sin θ-3 cos θ=0 find the value of 4 cos2θ-3 sin2θ+2

EASY
IMPORTANT

Use Fig. to find the value of 3 tanx0-2 sin y0 + 4 cos y0 Question Image

EASY
IMPORTANT

In Fig ABC is a right triangle, righrt angled at B. Given that ACB=θ side AB=2 cm and side BC=1 cm, find the value of  sin2θ+cos2θ.

EASY
IMPORTANT

If 2 sin x = 3, then evaluate 4 sin3x - 3 sin x 

EASY
IMPORTANT

Find the value of tan α from the given triangle ABC

Question Image

EASY
IMPORTANT

In a ABC, ADBC if tan B =34 and tan C = 512 and BC = 56 cm calculate the lengths of AD  

MEDIUM
IMPORTANT

Find the trigonometric ratios in standard position whose terminal arm passes through the points -6, 8

EASY
IMPORTANT

If cos θ=-725 and θ is in second quadrant, find the remaining trigonometric ratios.

EASY
IMPORTANT

Find the sine ratio in standard position where terminal arm passes through -5,-12.

EASY
IMPORTANT

if 3 sin θ = 4 cos θ, find the value of 4 sin2θ - 3 cos2θ + 2

EASY
IMPORTANT

if tan θ=2021, find the value of 1+sin θ + cos θ1 - sin θ + cos θ

EASY
IMPORTANT

if sin θ=m, find the value of tan2θ-1cos2θ

EASY
IMPORTANT

A tower stands vertically on the ground. At a point on the ground, which is 15 m away from the foot of the tower, the tower subtends an angle of 600. Find the height of the tower.