Range of Trigonometric Expressions

IMPORTANT

Range of Trigonometric Expressions: Overview

This topic covers concepts such as Range of Trigonometric Expressions and Greatest and Least Value of Asinx + Bcosx.

Important Questions on Range of Trigonometric Expressions

MEDIUM
IMPORTANT

The number of integral values of k for which the equation 7cosx+5sinx=2k+1 has a solution, is

MEDIUM
IMPORTANT

If A=sin2θ+cos4θ, then for all values of θ, A lies in the interval

EASY
IMPORTANT

The minimum value of 3cosx+4sinx+18 is :

EASY
IMPORTANT

If sinx+cosecx+tany+coty=4, where x0,π2 and y0,π2, then tany2 is a root of the equation

MEDIUM
IMPORTANT

If 7cosx-24sinx=dcosx+α,  0<α<π2. be true for all xR, than

MEDIUM
IMPORTANT

The greatest absolute integral value of k for which the statement 7cosx+5sinx=2k+1 is valid

MEDIUM
IMPORTANT

3sinx+cosx is maximum, when x is

EASY
IMPORTANT

The all values of expression ( 5cosθ+3cos( θ+ π 3 )+3 ) lies between

MEDIUM
IMPORTANT

If A=sin2θ+cos4θ,  then for all real values of θ

MEDIUM
IMPORTANT

The maximum value of 4sin2x+3cos2x+sinx2+cosx2 is

EASY
IMPORTANT

The maximum value of 2sinx+4cosx+3 is

HARD
IMPORTANT

The range of the function fx=sinx+cosx (where . denotes the greatest integer function) is

EASY
IMPORTANT

The maximum value of  coscoscossinx for all xR is

MEDIUM
IMPORTANT

The maximum value of 4 sin2x+3cos2x+sinx2+cosx2  is

MEDIUM
IMPORTANT

If y=1+4sin2xcos2x,  then

MEDIUM
IMPORTANT

The maximum value of sinx+π6+cosx+π6 in the interval 0,π2 is attained at

HARD
IMPORTANT

If sinθ+cosθ=x, then sin6θ+cos6θ=144-3x2-12 for

MEDIUM
IMPORTANT

The maximum value of cos2π3-x-cos2π3+x is