Trigonometric Functions of Multiple Angles

IMPORTANT

Trigonometric Functions of Multiple Angles: Overview

This topic covers concepts such as Trigonometric Identities for Multiple Angles, Expansion of sin2A, Expansion of cos2A, Expansion of tan2A, Expansion of sin3A, Expansion of cos3A, Expansion of tan3A, etc.

Important Questions on Trigonometric Functions of Multiple Angles

HARD
IMPORTANT

Let  f(x)=sin6x+cos6x+k(sin4x+cos4x)  for some real number k, then the value of k for which f(x) is constant for all values of x is

HARD
IMPORTANT

For 0<ϕ< π 2 , if x=n=0cos2nϕ, y=n=0sin2nϕ, z=n=0cos2nϕsin2nϕ, then

MEDIUM
IMPORTANT

( 1+cos π 8 )( 1+cos 3π 8 )( 1+cos 5π 8 )( 1+cos 7π 8 ) is equal to –

MEDIUM
IMPORTANT

The value of cos248°-sin212° is

MEDIUM
IMPORTANT

Find value of cos2π8.

MEDIUM
IMPORTANT

The value of the square of the expression sin2π7+sin4π7+sin8π7 is _____.

EASY
IMPORTANT

2cot2θ+tanθ-cotθ is equal to 

MEDIUM
IMPORTANT

What is the value of cosec712°?

MEDIUM
IMPORTANT

Find the exact value of sec712°

EASY
IMPORTANT

What is the value of sin712°?

EASY
IMPORTANT

If sinx=-45 and x lies in third quadrant then cosx2=15.

EASY
IMPORTANT

If sinx=35 and 0<x<π2, find the value of cosx2.

EASY
IMPORTANT

If sinx=-513 and x lies in fourth quadrant, then find sinx2.

EASY
IMPORTANT

If sinx=398 and x lies in second quadrant, then find sinx2.

EASY
IMPORTANT

If sinx=-45 and x lies in third quadrant then sinx2=25.

EASY
IMPORTANT

If sinx=35 and 0<x<π2, find the value of sinx2.

EASY
IMPORTANT

If sinx=53 and 0<x<π2, find the value of sinx2.

EASY
IMPORTANT

If cosπ15cos2π15cos3π15cos4π15cos6π15cos7π15cos30π15=x, then 18x=

MEDIUM
IMPORTANT

Given that tan x=125, cos y=-35 and  x, y are in the same quadrant, and the value of cos y2=mk, then m+k=

MEDIUM
IMPORTANT

Find the value of sin 3Asin A-cos 3Acos A.