• Written By Swapnil Nanda
  • Last Modified 01-01-2025

Integral of Trigonometric Functions: Definition, Formulas, Integrals of Various Forms

img-icon

Integral of Trigonometric Functions: If we know an object’s instantaneous velocity at a given time, a logical issue arises: can we calculate the object’s location at any given time? There are various practical & theoretical instances or scenarios involving the integration process. 

The expansion of integral calculus results from attempting to solve the problem of finding a function whenever its derivative is provided. It also results from the problem of finding the area enclosed by the graph of a function under specific conditions. These two problems result in two types of integrals, indefinite and definite integrals, making up the Integral Calculus. In this article, we will learn some standard formulae of trigonometric functions, and discuss the techniques to evaluate various forms of integrals involving trigonometric functions.

Primitive or Anti-derivative

A function ϕ(x) is called a primitive (or an anti-derivative or an integral) of a function f(x) if ϕ(x)=f(x).
For example, x44 is a primitive of x3, because ddx(x44)=x3.

Indefinite Integral

Consider the function f(x). The indefinite integral of f(x) is thus represented as f(x)dx, which is the family of all its primitives (or anti-derivatives).
The symbol f(x)dx is read as the indefinite integral of f(x) with respect to x.
Thus, ddx(ϕ(x)+C)=f(x)f(x)dx=ϕ(x)+C where C is an arbitrary constant known as the constant of integration and ϕ(x) is primitive of f(x).
Here, the integral sign ,f(x) is the integrand, the integration variable is x and the differential of x is dx.

Learn Everything About Trigonomtery Here

Fundamental Integration Formulas of Trigonometric Functions

Since ddx[ϕ(x)]=f(x)f(x)dx=ϕ(x)+C.
Based upon this and various standard differentiation formulae, we obtain the following integration formulae of trigonometric functions:
1. sinxdx=cosx+C
2. cosxdx=sinx+C
3. sec2xdx=tanx+C
4. cosec2xdx=cotx+C
5. secxtanxdx=secx+C
6. cosecxcotxdx=cosecx+C
7. cotxdx=log|sinx|+C
8. secxdx=log|secx+tanx|+C
9. cosecxdx=log|cosesxcotx|+C

Integral of the Form: f(ax+b)dx

If f(x)dx=ϕ(x), then f(ax+b)dx=1aϕ(ax+b)
We can prove the above result as follows:
Step 1: Let I=f(ax+b)dx
Step 2: Substitute ax+b=tdx=1adt.
Step 3: I=f(ax+b)dx=1af(t)dt
Step 4: I=1af(t)dt=1aϕ(t) [Since f(x)dx=ϕ(x)].
Step 5: Substitute back the value of t, So, we have
I=f(ax+b)dx=1aϕ(ax+b)
Based on the above result, we have some standard formulae of trigonometric functions
1. sin(ax+b)dx=1acos(ax+b)+C
2. cos(ax+b)dx=1asin(ax+b)+C
3. sec2(ax+b)dx=1atan(ax+b)+C
4. cosec2(ax+b)dt=1acot(ax+b)+C
5. sec(ax+b)tan(ax+b)dx=1asec(ax+b)+C
6. cosec(ax+b)cot(ax+b)dx=1acosec(ax+b)+C
7. tan(ax+b)dx=1alog|cos(ax+b)|+C
8. cot(ax+b)dx=1alog|sin(ax+b)|+C
9. sec(ax+b)dx=1alog|sec(ax+b)+tan(ax+b)|+C
10. cosec(ax+b)dx=1alog|cosec(ax+b)cot(ax+b)|+C

Evaluation of Integrals of the Form: sinmxdx,cosmxdx, where m4,mN

To evaluate integrals of the form sinmxdx,cosmxdx, where m4, we express sinmx and cosmx in terms of sines and cosines of multiples of x by using the following trigonometrical identities:
1. sin2x=1cos2x2
2. cos2x=1+cos2x2
3. sin3x=3sinx4sin3x
4. cos3x=4cos3x3cosx

Evaluation of Integrals of the Form: sinmxcosnxdx, sinmxsinnxdx,
cosmxcosnxdx

To evaluate these integrals, we use the following trigonometrical identities to express the products into sums.
1. 2sinAcosB=sin(A+B)+sin(AB)
2. 2cosAsinB=sin(A+B)sin(AB)
3. 2cosAcosB=cos(A+B)+cos(AB)
4. 2sinAsinB=cos(AB)cos(A+B)

Integrals of the Form: f(x)f(x)dx=log|f(x)|+C

Step 1: Let I=f(x)f(x)dx.
Step 2: Substitute f(x)=tf(x)dx=dt
Step 3: I=f(x)f(x)dx=1tdt=log|t|+C=log|f(x)|+C.

Note: If the numerator in the integrand is the exact differential of the denominator, then its integral is the logarithm of the denominator.

Some Standard Results

1. tanxdx=log|cosx|+C
2. cotxdx=log|sinx|+C
3. secxdx=log|secx+tanx|+C.
4. cosecxdx=log|cosecxcotx|+C

Integrals of the Form: tanmxsec2nxdx, cotmxcosec2nxdx;
m,nN

In order to evaluate this type of integral. We may follow the following algorithm.
Step 1: Write the given integral as I=tanmx(sec2x)(n1)sec2xdx
Step 2: Put tanx=tsec2xdx=dt and write the integral as
I=tanmx(sec2x)n1sec2xdx
=tanmx(1+tan2x)n1sec2xdx
=tm(1+t2)n1dt
Step 3: Expand (1+t2)n1 by binomial theorem in step 2 and integrate.
Step 4: Replace t by tanx in step 3.

Integrals of the Form: tannxdx,cotnxdx, where nN,n4

To evaluate the integral of this form, we use the following trigonometric identities:
1. tan2x=sec2x1
2. cot2x=cosec2x1

Integrals of the Form: sinmxcosmxdx, where m,nN

Algorithm:
Step 1: Obtain the integral, say, sinmxcosnxdx
Step 2: Check the exponents of sinx and cosx.
Step 3: Follow the following steps:
i. If the exponent of sinx is an odd integer put cosx=t.
ii. If the exponent of cosx is an odd integer put sinx=t.
iii. If the exponents of sinx and cosx both are odd positive integers put either sinx=t or cosx=t.
iv. If the exponents of sinx and cosx. both are even positive integers then express sinmxcosnx in terms of sines and cosines of multiples of x by using trigonometric results.
Step 5: Evaluate the integral obtained in step 3.

Evaluate Integrals of the form sinmxcosnxdx where m,nQ and m+n is a negative integer:

Algorithm:
Step 1: Change the integrand in terms of tanx and sec2x.
Step 2: Divide numerator and denominator by coskx, where k=(m+n)
Step 3: Substitute tanx=t and use the standard formulae

Evaluation of Integrals by Using the Trigonometric Substitutions

ExpressionSubstitution
a2+x2x=atanθ or acotθ
a2x2x=asinθ or acosθ
x2a2x=asecθ or acosecθ
axa+x or, a+xax
x=acos2θ
xαβx or (xα)(xβ)
x=αcos2θ+βsin2θ.

Integration Using Trigonometric Identities

While integrating a function with any form of trigonometric integrands, we employ trigonometric identities to simplify the functions.

Integrals of the Form, 1asinx+bcosxdx,1a+bsinxdx
1a+bcosxdx,1asinx+bcosx+cdx

Step 1: Put sinx=2tanx21+tan2x2 and cosx=1tan2x21+tan2x2 and simplify.
step 2: Replace 1+tan2x2 in the numerator by sec2x2.
Step 3: tanx2=t12sec2x2dx=dt. This substitution reduces the integral in the form 1at2+bt+cdt.
Step 4: Evaluate integral obtained in step 3 by converting it into the standard form whose formula is known to us.

Integrals of the Form, 1asin2x+bcos2xdx,1a+bsin2xdx
1a+bcos2xdx,1(asinx+bcosx)2dx

To evaluate these types of integrals we use the following algorithm.
Algorithm:
Step 1: Divide numerator and denominator both by cos2x.
Step 2: Replace sec2x, by 1+tan2x
Step 3: Put tanx=t so that sec2xdx=dt. This substitution reduces the integral in the form, 1at2+bt+cdt
Step 4: Evaluate integral obtained in step 3 by converting it into the standard form whose formula is known to us.

Reduction Formulae

A reduction formula is frequently used to calculate integrals of higher powers during integration. By applying this formula, we can reduce the power of trigonometric functions until its integration can be evaluated.

1. sinnxdx=cosxsinn1xn+n1nsinn2xdx
2. cosnxdx=sinxcosn1xn+n1ncosn2xdx
3. tannxdx=tann1xn1tann2xdx,n2
4. cotnxdx=cotn1xn1In2,n2
5. secnxdx=tanxsecn2xn1+n2n1In2

Solved Examples – Integral of Trigonometric Functions

Q.1. Evaluate : 1a2sin2x+b2cos2xdx
Ans:
1a2sin2x+b2cos2xdx
Dividing the numerator and denominator of the given integrand by cos2x, we get
I=1a2sin2x+b2cos2xdx=sec2xa2tan2x+b2dx
Putting tanx=t and sec2xdx=dt, we get
I=dta2t2+b2
=1a2dtt2+(ba)2
=1a2×1batan1(tba)+C
=1abtan1(atb)+C
=1abtan1(atanxb)+C
Hence, 1a2sin2x+b2cos2xdx=1abtan1(atanxb)+C

Q.2. Evaluate: sin3xcos4xdx
Ans: I=sin3xcos4xdx
Here,power of sinx is odd, so we substitute cosx=t
sinxdx=dtdx=dtsinx
I=sin3xt4(dtsinx)
=(sin2x×t4)dt
=(1t2)t4dt
=(t4t6)dt
I=t55+t77+C
Hence, sin3xcos4xdx=cos5x5+cos7x7+C

Q.3. Evaluate: sin4xcos8xdx
Ans:
I=sin4xcos8xdx
=(sin4xcos4xcos8xcos4x)dx
=(tan4xsec4x)dx
={tan4x(1+tan2x)sec2x}dx
Putting tanx=t, and sec2xdx=dt we get
I=t4(1+t2)dt
=t55+t77+C
Substituting for t, we get
I=tan5x5+tan7x7+C
Hence, sin4xcos8xdx=tan5x5+tan7x7+C

Q.4. Evaluate: sin8xcos8x12sin2xcos2xdx
Ans: I=sin8xcos8x12sin2xcos2xdx
=(sin4x+cos4x)(sin4xcos4x)(sin2x+cos2x)22sin2xcos2xdx
=(sin4x+cos4x)(sin2x+cos2x)(sin2xcos2x)sin4x+cos4xdx
=cos2xdx [cos2xsin2x=cos2x]
=12sin2x+C
Hence, sin3xcos8x12sin2xcos2xdx=12sin2x+C

Q.5. Evaluate : sin4xdx
Ans:
Let I=sin4xdx
=(1cos2x2)2dx[sin2θ=1cos2θ2]
=14(12cos2x+cos22x)dx
=14(12cos2x+1+cos4x2)dx
=18(24cos2x+1+cos4x)dx
=18(34cos2x+cos4x)dx
=18{3x2sin2x+sin4x4}+C
Hence, sin4xdx=18{3x2sin2x+sin4x4}+C

Summary of Integral of Trigonometric Functions

To perform the integration of trigonometric functions, we must know its standard formulas, a few of which came from the differentiation of trigonometric functions. Recall trigonometric identities such as cos2x=2cos2x1,cos2x=12sin2x,1+tan2x=sec2x,cos2xsin2x=cos2x, etc. Remember that to find the value of sinmxcosnxdx, where m, and n are non-negative integer, observe the exponents m, and n. For example, if m is odd, we substitute cosx=t. Similarly, if n is odd, substitute sinx=t. Also simplify the integrals having product of sine and cosine functions using the product to sum, difference formulae of trigonometric functions.

Frequently Asked Questions (FAQs)

Q.1. What is the integral of sine function?

Ans: The integration of sinθ is cosθ, and we mathematically, we write it as follows:
sinθdθ=cosθ+C, where C is an arbitrary constant.

Q.2. What are the trigonometric integration formula?

Ans: Fundamental integration formulas of trigonometric functions are as follows:
1. sinxdx=cosx+C
2. cosxdx=sinx+C
3. sec2xdx=tanx+C
4. cosec2xdx=cotx+C
5. secxtanxdx=secx+C
6. cosecxcotxdx=cosecx+C
7. cotxdx=log|sinx|+C
8. secxdx=log|secx+tanx|+C
9. cosecxdx=log|cosecxcotx|+C

Q.3. What are the 6 basic trigonometric functions?

Ans: In trigonometry, there are six functions of an angle that are often used. Sine(sin),cosine(cos),tangent(tan),cotangent(cot),secant(sec), and cosecant(cosec) are their names and abbreviations.

Q.4. What are the integrals of the 6 trigonometric functions?

Ans: The integrals of 6 trigonometric functions are given as follows:
1. sinxdx=cosx+C
2. cosxdx=sinx+C
3. tanxdx=log|cosx|+C
4. cosecxdx=log|cosesxcotx|+C
5. secxdx=log|secx+tanx|+C
6. cotxdx=log|sinx|+C

Q.5. How do you integrate trigonometric functions with power?

Ans: To evaluate integrals of the form: sinmxdx,cosmxdx, where m4, we express sinmx and cosmx in terms of sines and cosines of multiples of x by using the various trigonometrical identities. And, for large powers, we use the reduction formula’s given as follows:
1. sinnxdx=cosxsinn1xn+n1nsinn2xdx
2. cosnxdx=sinxcosn1xn+n1ncosn2xdx
3. tannxdx=tann1xn1tann2xdx,n2
4. cotnxdx=cotn1xn1In2,n2
5. secnxdx=tanxsecn2xn1+n2n1In2

Know about the Applications of Trigonometry Here

We hope this detailed article on the Integral of Trigonometric Functions will make you familiar with the topic. If you have any inquiries, feel to post them in the comment box. Stay tuned to embibe.com for more information.

Unleash Your True Potential With Personalised Learning on EMBIBE